Numerical Shadow

The web resource on numerical range and numerical shadow

User Tools

Site Tools


GHZ numerical shadow

GHZ entangled numerical shadow of a matrix $A$ is defined as a probability ditribution $P_A(z)$ on the complex plane, supported on the maximally entangled numerical range $W^\mathrm{ent}(A)$. $$ P_A(z) := \int_{\Omega} {\rm d} \mu(\psi) \delta\Bigl( z-\langle \psi|A|\psi\rangle\Bigr), $$ where $\mu(\psi)$ denotes the unique unitarily invariant (Fubini-Study) measure on the set $$ \Omega=\{\ket{\psi} \in \mathbb{C}^N: \ket{\psi} = \frac{1}{\sqrt{2}} \bigotimes_{i=1}^N U_i \left( \ket{0}^{\otimes N} + \ket{1}^{\otimes N} \right), \;\braket{\psi}{\psi}=1\}, $$ where $U_i \in SU(2)$

numerical-shadow/generalizations/restricted-numerical-shadow/ghz-numerical-shadow.txt · Last modified: 2013/08/03 21:03 by lpawela