Numerical Shadow

The web resource on numerical range and numerical shadow

User Tools

Site Tools


Separable numerical range


Separable numerical range $W^{\mathrm{sep}}(A)$ of a square matrix $A$ of size $d = \prod_{i=1}^K d_i$ is a subset of the complex plane defined as

$$ W^{\mathrm{sep}}(A)=\{z \in \mathbb{C}:\ z= \Tr{ \rho A,\ \rho \in \Omega_{\mathrm{sep}} }\}, $$ where $\Omega_{\mathrm{sep}}$ is a convex hull of rank one projectors on product vectors i.e. $\rho \in \Omega_{\mathrm{sep}}$ iff:

  • $\rho = \sum_j p_j \ket{\psi_j}\bra{\psi_j},\ $ $p_j\geq 0 \text{ and } \sum_j p_j=1$,
  • $\ket{\psi_j}=\bigotimes_{i=1}^K\ket{\psi^i_j}$,
  • for $i=1,\ldots,K$ and all $j$ we have $\ket{\psi^i_j}\in\mathbb{C}^{d_i}$ and $\braket{\psi^i_j}{\psi^i_j}=1$.


The separable numerical range of a matrix $A$ $W^{\mathrm{sep}}(A)$ is the convex hull of the product numerical range $W^\otimes(A)$ of this matrix $$W^{\mathrm{sep}}(A) = \mathrm{conv}\left(W^\otimes(A)\right)$$


Consider family of unitary matrices

$$ U_d(\alpha_1, \alpha_2, \alpha_3)= \exp(\ii \sum_{k=1}^3 \alpha_k \sigma_k \otimes \sigma_k). $$

Numerical range (light gray), separable numerical range (dark gray) and product numerical range (black dots) obtained by random sampling of family of matrices $U_d(\alpha, 0, 0) \text{diag}(\ii, -1, -\ii, 1) U_d (\alpha, 0, 0)^\dagger$ for $\alpha = 0, \pi/8, 3 \pi /16, \pi /4$ [1].

1. Piotr Gawron, Zbigniew Puchała, Jarosław Adam Miszczak, Łukasz Skowronek, Karol Życzkowski, 2010. Restricted numerical range: a versatile tool in the theory of quantum information. Journal of mathematical physics, 51, American Institute of Physics, pp.102204.
numerical-range/generalizations/restricted-numerical-range/separable-numerical-range.txt · Last modified: 2019/10/01 13:38 by rkukulski