Numerical Shadow

The web resource on numerical range and numerical shadow

User Tools

Site Tools


numerical-shadow:generalizations:restricted-numerical-shadow:product-numerical-shadow

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Last revision Both sides next revision
numerical-shadow:generalizations:restricted-numerical-shadow:product-numerical-shadow [2013/11/08 14:53]
lpawela
numerical-shadow:generalizations:restricted-numerical-shadow:product-numerical-shadow [2018/10/08 08:55]
plewandowska [Definition]
Line 3: Line 3:
  
  
-Product numerical shadow of a matrix $A$ is defined as a probability distribution $P_A(z)$ on the complex plane, supported on the [[numerical-range:​generalizations:​restricted-numerical-range:​product-numerical-range|product numerical range]] $W^\otimes(A)$.+Product numerical shadow of a matrix $A$ of dimension $d$ is defined as a probability distribution $P_A(z)$ on the complex plane, supported on the [[numerical-range:​generalizations:​restricted-numerical-range:​product-numerical-range|product numerical range]] $W^\otimes(A)$.
 $$ $$
 P_A(z) := \int_{\Omega} {\rm d} \mu(\psi) \delta\Bigl( z- \bra{\psi} A \ket{\psi} \Bigr), P_A(z) := \int_{\Omega} {\rm d} \mu(\psi) \delta\Bigl( z- \bra{\psi} A \ket{\psi} \Bigr),
Line 14: Line 14:
 \bigotimes_{i=1}^N \bigotimes_{i=1}^N
 \ket{\phi_i},​ \ket{\phi_i},​
-\text{ for } i=1,\ldots,N\ \braket{\phi_i}{\phi_i}=1 \text{ and } \ket{\phi_i}\in\mathbb{C}^2+\text{ for } i=1,\ldots,d\ \braket{\phi_i}{\phi_i}=1 \text{ and } \ket{\phi_i}\in\mathbb{C}^2
 \} \}
 $$ $$
numerical-shadow/generalizations/restricted-numerical-shadow/product-numerical-shadow.txt · Last modified: 2018/10/08 08:56 by plewandowska