- [1]B. Lins, I. M. Spitkovsky, and S. Zhong, “The normalized numerical range and the Davis–Wielandt shell,” Linear Algebra and its Applications, vol. 546, pp. 187–209, 2018, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0024379518300417.
@article{lins2018normalized,
title = {The normalized numerical range and the Davis--Wielandt shell},
author = {Lins, Brian and Spitkovsky, Ilya M and Zhong, Siyu},
journal = {Linear Algebra and its Applications},
volume = {546},
pages = {187--209},
year = {2018},
publisher = {Elsevier},
url = {https://www.sciencedirect.com/science/article/pii/S0024379518300417}
}
- [2]L. Z. Gevorgyan, “Normalized numerical ranges of some operators,” Operators and Matrices, vol. 3, no. 1, pp. 145–153, 2009, [Online]. Available at: https://nyuscholars.nyu.edu/en/publications/on-the-normalized-numerical-range.
@article{gevorgyan2009normalized,
title = {Normalized numerical ranges of some operators},
author = {Gevorgyan, LZ},
journal = {Operators and Matrices},
volume = {3},
number = {1},
pages = {145--153},
year = {2009},
url = {https://nyuscholars.nyu.edu/en/publications/on-the-normalized-numerical-range}
}
- [3]W. Auzinger, “Sectorial operators and normalized numerical range,” Applied numerical mathematics, vol. 45, no. 4, pp. 367–388, 2003, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0168927402002544.
@article{auzinger2003sectorial,
title = {Sectorial operators and normalized numerical range},
author = {Auzinger, Winfried},
journal = {Applied numerical mathematics},
volume = {45},
number = {4},
pages = {367--388},
year = {2003},
publisher = {Elsevier},
url = {https://www.sciencedirect.com/science/article/pii/S0168927402002544}
}
- [4]K. A. Camenga, P. X. Rault, D. J. Rossi, T. Sendova, and I. M. Spitkovsky, “Numerical range of some doubly stochastic matrices,” Applied Mathematics and Computation, vol. 221, pp. 40–47, 2013, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0096300313006231.
@article{camenga2013numerical,
title = {Numerical range of some doubly stochastic matrices},
author = {Camenga, Kristin A and Rault, Patrick X and Rossi, Daniel J and Sendova, Tsvetanka and Spitkovsky, Ilya M},
journal = {Applied Mathematics and Computation},
volume = {221},
pages = {40--47},
year = {2013},
publisher = {Elsevier},
url = {https://www.sciencedirect.com/science/article/pii/S0096300313006231}
}
- [5]T. Leake, B. Lins, and I. M. Spitkovsky, “Corrections and additions to ‘Inverse continuity on the boundary of the numerical range,’” Linear and Multilinear Algebra, vol. 64, no. 1, pp. 100–104, 2016, [Online]. Available at: https://doi.org/10.1080/03081087.2015.1044247.
@article{leake2016corrections,
title = {Corrections and additions to ‘Inverse continuity on the boundary of the numerical range’},
author = {Leake, Timothy and Lins, Brian and Spitkovsky, Ilya M},
journal = {Linear and Multilinear Algebra},
volume = {64},
number = {1},
pages = {100--104},
year = {2016},
publisher = {Taylor \& Francis},
url = {https://doi.org/10.1080/03081087.2015.1044247}
}
- [6]T. Leake, B. Lins, and I. M. Spitkovsky, “Inverse continuity on the boundary of the numerical range,” Linear and Multilinear Algebra, vol. 62, no. 10, pp. 1335–1345, 2014, [Online]. Available at: https://doi.org/10.1080/03081087.2013.825911.
@article{leake2014inverse,
title = {Inverse continuity on the boundary of the numerical range},
author = {Leake, Timothy and Lins, Brian and Spitkovsky, Ilya M},
journal = {Linear and Multilinear Algebra},
volume = {62},
number = {10},
pages = {1335--1345},
year = {2014},
publisher = {Taylor \& Francis},
url = {https://doi.org/10.1080/03081087.2013.825911}
}
- [7]K. A. Camenga, P. X. Rault, D. J. Rossi, T. Sendova, and I. M. Spitkovsky, “Numerical range of some doubly stochastic matrices,” Applied Mathematics and Computation, vol. 221, pp. 40–47, 2013, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0096300313006231.
@article{camenga2013numericam,
title = {Numerical range of some doubly stochastic matrices},
author = {Camenga, Kristin A and Rault, Patrick X and Rossi, Daniel J and Sendova, Tsvetanka and Spitkovsky, Ilya M},
journal = {Applied Mathematics and Computation},
volume = {221},
pages = {40--47},
year = {2013},
publisher = {Elsevier},
url = {https://www.sciencedirect.com/science/article/pii/S0096300313006231}
}
- [8]R. T. Chien and I. M. Spitkovsky, “On the numerical ranges of some tridiagonal matrices,” Linear Algebra and its Applications, vol. 470, pp. 228–240, 2015, [Online]. Available at: https://doi.org/10.1016/j.laa.2014.08.010.
@article{chien2015numerical,
title = {On the numerical ranges of some tridiagonal matrices},
author = {Chien, Ruey Ting and Spitkovsky, Ilya M},
journal = {Linear Algebra and its Applications},
volume = {470},
pages = {228--240},
year = {2015},
publisher = {Elsevier},
url = {https://doi.org/10.1016/j.laa.2014.08.010}
}
- [9]I. Spitkovsky and C. Thomas, “Line segments on the boundary of the numerical ranges of some tridiagonal matrices,” The Electronic Journal of Linear Algebra, vol. 30, pp. 693–703, 2015, [Online]. Available at: https://doi.org/10.13001/1081-3810.3012.
@article{spitkovsky2015line,
title = {Line segments on the boundary of the numerical ranges of some tridiagonal matrices},
author = {Spitkovsky, Ilya and Thomas, Claire},
journal = {The Electronic Journal of Linear Algebra},
volume = {30},
pages = {693--703},
year = {2015},
url = {https://doi.org/10.13001/1081-3810.3012}
}
- [10]L. Rodman and I. M. Spitkovsky, “On numerical ranges of rank-two operators,” Integral Equations and Operator Theory, vol. 77, no. 3, pp. 441–448, 2013, [Online]. Available at: https://link.springer.com/article/10.1007/s00020-013-2092-y.
@article{rodman2013numerical,
title = {On numerical ranges of rank-two operators},
author = {Rodman, Leiba and Spitkovsky, Ilya M},
journal = {Integral Equations and Operator Theory},
volume = {77},
number = {3},
pages = {441--448},
year = {2013},
publisher = {Springer},
url = {https://link.springer.com/article/10.1007/s00020-013-2092-y}
}
- [11]K. A. Camenga, P. X. Rault, T. Sendova, and I. M. Spitkovsky, “On the Gau–Wu number for some classes of matrices,” Linear Algebra and its Applications, vol. 444, pp. 254–262, 2014, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0024379513007830.
@article{camenga2014gau,
title = {On the Gau--Wu number for some classes of matrices},
author = {Camenga, Kristin A and Rault, Patrick X and Sendova, Tsvetanka and Spitkovsky, Ilya M},
journal = {Linear Algebra and its Applications},
volume = {444},
pages = {254--262},
year = {2014},
publisher = {Elsevier},
url = {https://www.sciencedirect.com/science/article/pii/S0024379513007830}
}
- [12]R. Birbonshi, I. M. Spitkovsky, and P. D. Srivastava, “A note on Anderson’s theorem in the infinite-dimensional setting,” Journal of Mathematical Analysis and Applications, vol. 461, no. 1, pp. 349–353, 2018, [Online]. Available at: https://doi.org/10.1016/j.jmaa.2018.01.002.
@article{birbonshi2018note,
title = {A note on Anderson's theorem in the infinite-dimensional setting},
author = {Birbonshi, Riddhick and Spitkovsky, Ilya M and Srivastava, PD},
journal = {Journal of Mathematical Analysis and Applications},
volume = {461},
number = {1},
pages = {349--353},
year = {2018},
publisher = {Elsevier},
url = {https://doi.org/10.1016/j.jmaa.2018.01.002}
}
- [13]P. Rault, T. Sendova, and I. Spitkovsky, “3-by-3 matrices with elliptical numerical range revisited,” The Electronic Journal of Linear Algebra, vol. 26, 2013, [Online]. Available at: https://www.researchgate.net/publication/267480998_3-by-3_matrices_with_elliptical_numerical_range_revisited.
@article{rault20133,
title = {3-by-3 matrices with elliptical numerical range revisited},
author = {Rault, Patrick and Sendova, Tsvetanka and Spitkovsky, Ilya},
journal = {The Electronic Journal of Linear Algebra},
volume = {26},
year = {2013},
url = {https://www.researchgate.net/publication/267480998_3-by-3_matrices_with_elliptical_numerical_range_revisited}
}
- [14]B. Lins and I. Spitkovsky, “Inverse continuity of the numerical range map for Hilbert space operators,” arXiv preprint arXiv:1810.04199, vol. 0, 2018, [Online]. Available at: https://arxiv.org/abs/1810.04199.
@article{lins2018inverse,
title = {Inverse continuity of the numerical range map for Hilbert space operators},
author = {Lins, Brian and Spitkovsky, Ilya},
journal = {arXiv preprint arXiv:1810.04199},
volume = {0},
year = {2018},
url = {https://arxiv.org/abs/1810.04199}
}
- [15]H.-L. Gau, P. Y. Wu, and others, “Numerical ranges and compressions of Sn-matrices,” Operators and Matrices, vol. 7, no. 2, pp. 465–476, 2013, [Online]. Available at: https://www.researchgate.net/profile/Pei_Wu2/publication/268664189_Numerical_ranges_and_compressions_of_S_n_-matrices/links/547e5a590cf2d2200ede9933/Numerical-ranges-and-compressions-of-S-n-matrices.pdf.
@article{gau2013numerical,
title = {Numerical ranges and compressions of Sn-matrices},
author = {Gau, Hwa-Long and Wu, Pei Yuan and others},
journal = {Operators and Matrices},
volume = {7},
number = {2},
pages = {465--476},
year = {2013},
url = {https://www.researchgate.net/profile/Pei_Wu2/publication/268664189_Numerical_ranges_and_compressions_of_S_n_-matrices/links/547e5a590cf2d2200ede9933/Numerical-ranges-and-compressions-of-S-n-matrices.pdf}
}
- [16]M. Adam, A. Aretaki, and I. M. Spitkovsky, “Elliptical higher rank numerical range of some Toeplitz matrices,” Linear Algebra and its Applications, vol. 549, pp. 256–275, 2018, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0024379518301344.
@article{adam2018elliptical,
title = {Elliptical higher rank numerical range of some Toeplitz matrices},
author = {Adam, Maria and Aretaki, Aikaterini and Spitkovsky, Ilya M},
journal = {Linear Algebra and its Applications},
volume = {549},
pages = {256--275},
year = {2018},
publisher = {Elsevier},
url = {https://www.sciencedirect.com/science/article/pii/S0024379518301344}
}
- [17]K. A. Camenga, L. Deaett, P. X. Rault, T. Sendova, I. M. Spitkovsky, and R. B. J. Yates, “Singularities of base polynomials and Gau–Wu numbers,” Linear Algebra and its Applications, vol. 581, pp. 112–127, 2019, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0024379519302861.
@article{camenga2019singularities,
title = {Singularities of base polynomials and Gau--Wu numbers},
author = {Camenga, Kristin A and Deaett, Louis and Rault, Patrick X and Sendova, Tsvetanka and Spitkovsky, Ilya M and Yates, Rebekah B Johnson},
journal = {Linear Algebra and its Applications},
volume = {581},
pages = {112--127},
year = {2019},
publisher = {Elsevier},
url = {https://www.sciencedirect.com/science/article/pii/S0024379519302861}
}
- [18]A. Hamed and I. Spitkovsky, “On the maximal numerical range of some matrices,” The Electronic Journal of Linear Algebra, vol. 34, pp. 288–303, 2018, [Online]. Available at: https://doi.org/10.13001/1081-3810.3774.
@article{hamed2018maximal,
title = {On the maximal numerical range of some matrices},
author = {Hamed, Ali and Spitkovsky, Ilya},
journal = {The Electronic Journal of Linear Algebra},
volume = {34},
pages = {288--303},
year = {2018},
url = {https://doi.org/10.13001/1081-3810.3774}
}
- [19]T. Geryba and I. M. Spitkovsky, “On some 4-by-4 matrices with bi-elliptical numerical ranges,” arXiv e-prints, vol. 0, 2020, [Online]. Available at: https://arxiv.org/abs/2009.00272.
@article{arXiv200900272G,
title = {On some 4-by-4 matrices with bi-elliptical numerical ranges},
author = {{Geryba}, Titas and {Spitkovsky}, Ilya M.},
journal = {arXiv e-prints},
year = {2020},
volume = {0},
url = {https://arxiv.org/abs/2009.00272}
}
- [20]J. Xie et al., “Observing geometry of quantum states in a three-level system,” arXiv preprint arXiv:1909.05463, vol. 0, 2019, [Online]. Available at: https://arxiv.org/abs/1909.05463.
@article{xie2019observing,
title = {Observing geometry of quantum states in a three-level system},
author = {Xie, Jie and Zhang, Aonan and Cao, Ningping and Xu, Huichao and Zheng, Kaimin and Poon, Yiu-Tung and Sze, Nung-Sing and Xu, Ping and Zeng, Bei and Zhang, Lijian},
journal = {arXiv preprint arXiv:1909.05463},
volume = {0},
year = {2019},
url = {https://arxiv.org/abs/1909.05463}
}
- [21]N. Cao, D. W. Kribs, C.-K. Li, M. I. Nelson, Y.-T. Poon, and B. Zeng, Higher rank matricial ranges and hybrid quantum error correction. Taylor & Francis, 2020, pp. 1–13.
@book{cao2020higher,
title = {Higher rank matricial ranges and hybrid quantum error correction},
author = {Cao, Ningping and Kribs, David W and Li, Chi-Kwong and Nelson, Mike I and Poon, Yiu-Tung and Zeng, Bei},
journal = {Linear and Multilinear Algebra},
pages = {1--13},
year = {2020},
publisher = {Taylor \& Francis},
url = {https://www.tandfonline.com/doi/abs/10.1080/03081087.2020.1748852}
}
- [22]H.-L. Gau and P. Y. Wu, “Numerical ranges of companion matrices,” Linear algebra and its applications, vol. 421, no. 2-3, pp. 202–218, 2007, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0024379506001893.
@article{gau2007numerical,
title = {Numerical ranges of companion matrices},
author = {Gau, Hwa-Long and Wu, Pei Yuan},
journal = {Linear algebra and its applications},
volume = {421},
number = {2-3},
pages = {202--218},
year = {2007},
publisher = {Elsevier},
url = {https://www.sciencedirect.com/science/article/pii/S0024379506001893}
}
- [23]B. Lins, “Numerical ranges encircled by analytic curves,” arXiv preprint arXiv:2003.05347, vol. 0, 2020, [Online]. Available at: https://arxiv.org/abs/2003.05347.
@article{lins2020numerical,
title = {Numerical ranges encircled by analytic curves},
author = {Lins, Brian},
journal = {arXiv preprint arXiv:2003.05347},
volume = {0},
year = {2020},
url = {https://arxiv.org/abs/2003.05347}
}
- [24]S. Bogli and M. Marletta, “Essential numerical ranges for linear operator pencils,” arXiv preprint arXiv:1909.01301, vol. 0, 2019, [Online]. Available at: https://arxiv.org/abs/1909.01301.
@article{bogli2019essential,
title = {Essential numerical ranges for linear operator pencils},
author = {Bogli, Sabine and Marletta, Marco},
journal = {arXiv preprint arXiv:1909.01301},
volume = {0},
year = {2019},
url = {https://arxiv.org/abs/1909.01301}
}
- [25]C.-K. Li, Y.-T. Poon, and Y.-S. Wang, “Joint numerical ranges and communtativity of matrices,” arXiv preprint arXiv:2002.02768, vol. 0, 2020, [Online]. Available at: https://arxiv.org/abs/2002.02768.
@article{li2020joint,
title = {Joint numerical ranges and communtativity of matrices},
author = {Li, Chi-Kwong and Poon, Yiu-Tung and Wang, Ya-Shu},
journal = {arXiv preprint arXiv:2002.02768},
year = {2020},
volume = {0},
url = {https://arxiv.org/abs/2002.02768}
}
- [26]D. Plaumann, R. Sinn, and S. Weis, “Kippenhahn’s Theorem for joint numerical ranges and quantum states,” arXiv preprint arXiv:1907.04768, vol. 0, 2019, [Online]. Available at: https://arxiv.org/abs/1907.04768.
@article{plaumann2019kippenhahn,
title = {Kippenhahn's Theorem for joint numerical ranges and quantum states},
author = {Plaumann, Daniel and Sinn, Rainer and Weis, Stephan},
journal = {arXiv preprint arXiv:1907.04768},
year = {2019},
volume = {0},
url = {https://arxiv.org/abs/1907.04768}
}
- [27]K. Bickel and P. Gorkin, “Numerical Range and Compressions of the Shift,” arXiv preprint arXiv:1810.11680, vol. 0, 2018, [Online]. Available at: https://arxiv.org/abs/1810.11680.
@article{bickel2018numerical,
title = {Numerical Range and Compressions of the Shift},
author = {Bickel, Kelly and Gorkin, Pamela},
journal = {arXiv preprint arXiv:1810.11680},
year = {2018},
volume = {0},
url = {https://arxiv.org/abs/1810.11680}
}
- [28]J. Kim and Y. Kim, “Jordan Plane and Numerical Range of Operators Involving Two Projections,” arXiv preprint arXiv:1811.10518, vol. 0, 2018, [Online]. Available at: https://arxiv.org/abs/1811.10518.
@article{kim2018jordan,
title = {Jordan Plane and Numerical Range of Operators Involving Two Projections},
author = {Kim, Jaedeok and Kim, Youngmi},
journal = {arXiv preprint arXiv:1811.10518},
year = {2018},
volume = {0},
url = {https://arxiv.org/abs/1811.10518}
}
- [29]M. Fatehi and A. Negahdari, “Numerical range of weighted composition operators which contain zero,” arXiv preprint arXiv:1901.07736, vol. 0, 2019, [Online]. Available at: https://arxiv.org/abs/1901.07736.
@article{fatehi2019numerical,
title = {Numerical range of weighted composition operators which contain zero},
author = {Fatehi, Mahsa and Negahdari, Asma},
journal = {arXiv preprint arXiv:1901.07736},
year = {2019},
volume = {0},
url = {https://arxiv.org/abs/1901.07736}
}
- [30]C.-K. Li and Y.-T. Poon, “Numerical Range Inclusion, Dilation, and Operator Systems,” arXiv preprint arXiv:1911.01221, vol. 0, 2019, [Online]. Available at: https://arxiv.org/abs/1911.01221.
@article{li2019numerical,
title = {Numerical Range Inclusion, Dilation, and Operator Systems},
author = {Li, Chi-Kwong and Poon, Yiu-Tung},
journal = {arXiv preprint arXiv:1911.01221},
year = {2019},
volume = {0},
url = {https://arxiv.org/abs/1911.01221}
}
- [31]T. Geryba and I. M. Spitkovsky, “On the numerical range of some block matrices with scalar diagonal blocks,” Linear and Multilinear Algebra, vol. 0, pp. 1–14, 2020, [Online]. Available at: https://www.tandfonline.com/doi/abs/10.1080/03081087.2020.1749225?journalCode=glma20.
@article{geryba2020numerical,
title = {On the numerical range of some block matrices with scalar diagonal blocks},
author = {Geryba, Titas and Spitkovsky, Ilya M},
journal = {Linear and Multilinear Algebra},
pages = {1--14},
year = {2020},
volume = {0},
publisher = {Taylor and Francis},
url = {https://www.tandfonline.com/doi/abs/10.1080/03081087.2020.1749225?journalCode=glma20}
}
- [32]Y. Zhang and X. Fang, “c-numerical range of operator products on B (H),” arXiv preprint arXiv:1901.05245, vol. 0, 2019, [Online]. Available at: https://arxiv.org/abs/1901.05245.
@article{zhang2019c,
title = {c-numerical range of operator products on B (H)},
author = {Zhang, Yanfang and Fang, Xiaochun},
journal = {arXiv preprint arXiv:1901.05245},
year = {2019},
volume = {0},
url = {https://arxiv.org/abs/1901.05245}
}
- [33]P. A. Fillmore, J. G. Stampfli, and J. P. Williams, “On the essential numerical range, the essential spectrum, and a problem of Halmos,” Acta Sci. Math.(Szeged), vol. 33, no. 197, pp. 179–192, 1972, [Online]. Available at: http://acta.bibl.u-szeged.hu/14354/1/math_033_fasc_003_004_179-192.pdf.
@article{fillmore1972essential,
title = {On the essential numerical range, the essential spectrum, and a problem of Halmos},
author = {Fillmore, PA and Stampfli, JG and Williams, James P},
journal = {Acta Sci. Math.(Szeged)},
volume = {33},
number = {197},
pages = {179--192},
year = {1972},
url = {http://acta.bibl.u-szeged.hu/14354/1/math_033_fasc_003_004_179-192.pdf}
}
- [34]J. G. Stampfli and J. P. Williams, “Growth conditions and the numerical range in a Banach algebra,” Tohoku Mathematical Journal, Second Series, vol. 20, no. 4, pp. 417–424, 1968, [Online]. Available at: https://www.jstage.jst.go.jp/article/tmj1949/20/4/20_4_417/_article/-char/ja/.
@article{stampfli1968growth,
title = {Growth conditions and the numerical range in a Banach algebra},
author = {Stampfli, JG and Williams, JP},
journal = {Tohoku Mathematical Journal, Second Series},
volume = {20},
number = {4},
pages = {417--424},
year = {1968},
publisher = {Mathematical Institute, Tohoku University},
url = {https://www.jstage.jst.go.jp/article/tmj1949/20/4/20_4_417/_article/-char/ja/}
}
- [35]S. Bogli, M. Marletta, and C. Tretter, “The essential numerical range for unbounded linear operators,” Journal of Functional Analysis, vol. 0, p. 108509, 2020, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0022123620300525.
@article{bogli2020essential,
title = {The essential numerical range for unbounded linear operators},
author = {Bogli, Sabine and Marletta, Marco and Tretter, Christiane},
journal = {Journal of Functional Analysis},
pages = {108509},
year = {2020},
volume = {0},
publisher = {Elsevier},
url = {https://www.sciencedirect.com/science/article/pii/S0022123620300525}
}
- [36]L. Carvalho, C. Diogo, and S. Mendes, “The star-center of the quaternionic numerical range,” Linear Algebra and its Applications, vol. 0, 2020, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0024379520302706.
@article{carvalho2019star,
title = {The star-center of the quaternionic numerical range},
author = {Carvalho, Luís and Diogo, Cristina and Mendes, Sérgio},
journal = {Linear Algebra and its Applications},
year = {2020},
volume = {0},
publisher = {Elsevier},
url = {https://www.sciencedirect.com/science/article/pii/S0024379520302706}
}
- [37]P.-S. Lau, C.-K. Li, Y.-T. Poon, and N.-S. Sze, “Convexity and star-shapedness of matricial range,” Journal of Functional Analysis, vol. 275, no. 9, pp. 2497–2515, 2018, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0022123618301277.
@article{lau2018convexity,
title = {Convexity and star-shapedness of matricial range},
author = {Lau, Pan-Shun and Li, Chi-Kwong and Poon, Yiu-Tung and Sze, Nung-Sing},
journal = {Journal of Functional Analysis},
volume = {275},
number = {9},
pages = {2497--2515},
year = {2018},
publisher = {Elsevier},
url = {https://www.sciencedirect.com/science/article/pii/S0022123618301277}
}
- [38]P. S. Kumar, “A note on convexity of sections of quaternionic numerical range,” Linear Algebra and its Applications, vol. 572, pp. 92–116, 2019, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0024379519300990.
@article{kumar2019note,
title = {A note on convexity of sections of quaternionic numerical range},
author = {Kumar, P Santhosh},
journal = {Linear Algebra and its Applications},
volume = {572},
pages = {92--116},
year = {2019},
publisher = {Elsevier},
url = {https://www.sciencedirect.com/science/article/pii/S0024379519300990}
}
- [39]L. Carvalho, C. Diogo, and S. Mendes, “On the convexity and circularity of the numerical range of nilpotent quaternionic matrices,” arXiv preprint arXiv:1907.13438, vol. 0, 2019, [Online]. Available at: https://arxiv.org/abs/1907.13438.
@article{carvalho2019convexity,
title = {On the convexity and circularity of the numerical range of nilpotent quaternionic matrices},
author = {Carvalho, Luis and Diogo, Cristina and Mendes, Sérgio},
journal = {arXiv preprint arXiv:1907.13438},
year = {2019},
volume = {0},
url = {https://arxiv.org/abs/1907.13438}
}
- [40]M. Argerami and S. Mustafa, “Higher rank numerical ranges of Jordan-like matrices,” Linear and Multilinear Algebra, vol. 0, pp. 1–20, 2019, [Online]. Available at: https://www.tandfonline.com/doi/abs/10.1080/03081087.2019.1684873?journalCode=glma20.
@article{argerami2019higher,
title = {Higher rank numerical ranges of Jordan-like matrices},
author = {Argerami, Martín and Mustafa, Saleh},
journal = {Linear and Multilinear Algebra},
pages = {1--20},
volume = {0},
year = {2019},
publisher = {Taylor \& Francis},
url = {https://www.tandfonline.com/doi/abs/10.1080/03081087.2019.1684873?journalCode=glma20}
}
- [41]G. Dirr and F. vom Ende, “The C-Numerical Range for Schatten-Class Operators,” arXiv preprint arXiv:1808.06898, vol. 0, 2018, [Online]. Available at: https://arxiv.org/abs/1808.06898.
@article{dirr2018c,
title = {The C-Numerical Range for Schatten-Class Operators},
author = {Dirr, Gunther and Ende, Frederik vom},
journal = {arXiv preprint arXiv:1808.06898},
year = {2018},
volume = {0},
url = {https://arxiv.org/abs/1808.06898}
}
- [42]R. C. Thompson, Research problem the matrix numerical range. Taylor and Francis, 1987.
@book{thompson1987research,
title = {Research problem the matrix numerical range},
author = {Thompson, Robert C},
year = {1987},
publisher = {Taylor and Francis},
url = {https://www.tandfonline.com/doi/abs/10.1080/03081088708817807}
}
- [43]C.-K. Li and N.-K. Tsing, “The numerical range of derivations,” Linear Algebra and its Applications, vol. 119, pp. 97–119, 1989, [Online]. Available at: https://core.ac.uk/download/pdf/82777226.pdf.
@article{li1989numerical,
title = {The numerical range of derivations},
author = {Li, Chi-Kwong and Tsing, Nam-Kiu},
journal = {Linear Algebra and its Applications},
volume = {119},
pages = {97--119},
year = {1989},
publisher = {North-Holland},
url = {https://core.ac.uk/download/pdf/82777226.pdf}
}
- [44]C.-K. Li, B.-S. Tam, and N.-K. Tsing, “Linear operators preserving the (p, q)-numerical range,” Linear Algebra and its Applications, vol. 110, pp. 75–89, 1988, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/0024379583901337.
@article{li1988linear,
title = {Linear operators preserving the (p, q)-numerical range},
author = {Li, Chi-Kwong and Tam, Bit-Shun and Tsing, Nam-Kiu},
journal = {Linear Algebra and its Applications},
volume = {110},
pages = {75--89},
year = {1988},
publisher = {Elsevier},
url = {https://www.sciencedirect.com/science/article/pii/0024379583901337}
}
- [45]W.-F. Chuan, “The unitary equivalence of compact operators,” Glasgow Mathematical Journal, vol. 26, no. 2, pp. 145–149, 1985, [Online]. Available at: https://www.cambridge.org/core/journals/glasgow-mathematical-journal/article/unitary-equivalence-of-compact-operators/799971338C614A5088FB71FE0691659A.
@article{chuan1985unitary,
title = {The unitary equivalence of compact operators},
author = {Chuan, Wai-Fong},
journal = {Glasgow Mathematical Journal},
volume = {26},
number = {2},
pages = {145--149},
year = {1985},
publisher = {Cambridge University Press},
url = {https://www.cambridge.org/core/journals/glasgow-mathematical-journal/article/unitary-equivalence-of-compact-operators/799971338C614A5088FB71FE0691659A}
}
- [46]C.-K. Li and N.-K. Tsing, “On the k th matrix numerical range,” Linear and Multilinear Algebra, vol. 28, no. 4, pp. 229–239, 1991, [Online]. Available at: https://www.tandfonline.com/doi/abs/10.1080/03081089108818047.
@article{li1991k,
title = {On the k th matrix numerical range},
author = {Li, Chi-Kwong and Tsing, Nam-Kiu},
journal = {Linear and Multilinear Algebra},
volume = {28},
number = {4},
pages = {229--239},
year = {1991},
publisher = {Taylor and Francis},
url = {https://www.tandfonline.com/doi/abs/10.1080/03081089108818047}
}
- [47]C.-K. Li, Y.-T. Poon, and N.-S. Sze, “Generalized interlacing inequalities,” Linear and Multilinear Algebra, vol. 60, no. 11-12, pp. 1245–1254, 2012, [Online]. Available at: https://www.tandfonline.com/doi/abs/10.1080/03081087.2011.619534?journalCode=glma20.
@article{li2012generalized,
title = {Generalized interlacing inequalities},
author = {Li, Chi-Kwong and Poon, Yiu-Tung and Sze, Nung-Sing},
journal = {Linear and Multilinear Algebra},
volume = {60},
number = {11-12},
pages = {1245--1254},
year = {2012},
publisher = {Taylor and Francis},
url = {https://www.tandfonline.com/doi/abs/10.1080/03081087.2011.619534?journalCode=glma20}
}
- [48]M.-D. Choi, N. Johnston, and D. W. Kribs, “The multiplicative domain in quantum error correction,” Journal of Physics A: Mathematical and Theoretical, vol. 42, no. 24, p. 245303, 2009, [Online]. Available at: https://iopscience.iop.org/article/10.1088/1751-8113/42/24/245303/meta.
@article{choi2009multiplicative,
title = {The multiplicative domain in quantum error correction},
author = {Choi, Man-Duen and Johnston, Nathaniel and Kribs, David W},
journal = {Journal of Physics A: Mathematical and Theoretical},
volume = {42},
number = {24},
pages = {245303},
year = {2009},
publisher = {IOP Publishing},
url = {https://iopscience.iop.org/article/10.1088/1751-8113/42/24/245303/meta}
}
- [49]N.-K. Tsin, “Diameter and minimal width of the numerical range,” Linear and multilinear algebra, vol. 14, no. 2, pp. 179–185, 1983, [Online]. Available at: https://www.tandfonline.com/doi/abs/10.1080/03081088308817554.
@article{tsin1983diameter,
title = {Diameter and minimal width of the numerical range},
author = {Tsin, Nam-Kiu},
journal = {Linear and multilinear algebra},
volume = {14},
number = {2},
pages = {179--185},
year = {1983},
publisher = {Taylor and Francis},
url = {https://www.tandfonline.com/doi/abs/10.1080/03081088308817554}
}
- [50]D. Plaumann, R. Sinn, and S. Weis, “Kippenhahn’s Theorem for joint numerical ranges and quantum states,” arXiv preprint arXiv:1907.04768, vol. 0, 2019, [Online]. Available at: https://arxiv.org/abs/1907.04768.
@article{plaumann2019kippenhaho,
title = {Kippenhahn's Theorem for joint numerical ranges and quantum states},
author = {Plaumann, Daniel and Sinn, Rainer and Weis, Stephan},
journal = {arXiv preprint arXiv:1907.04768},
year = {2019},
volume = {0},
url = {https://arxiv.org/abs/1907.04768}
}
- [51]J.-C. Bourin and A. Mhanna, “Positive block matrices and numerical ranges,” Comptes Rendus Mathematique, vol. 355, no. 10, pp. 1077–1081, 2017, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S1631073X1730256X.
@article{bourin2017positive,
title = {Positive block matrices and numerical ranges},
author = {Bourin, Jean-Christophe and Mhanna, Antoine},
journal = {Comptes Rendus Mathematique},
volume = {355},
number = {10},
pages = {1077--1081},
year = {2017},
publisher = {Elsevier},
url = {https://www.sciencedirect.com/science/article/pii/S1631073X1730256X}
}
- [52]M.-T. Chien, H. Nakazato, and J. Meng, “The diameter and width of numerical ranges,” Linear Algebra and its Applications, vol. 582, pp. 76–98, 2019, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0024379519303301.
@article{chien2019diameter,
title = {The diameter and width of numerical ranges},
author = {Chien, Mao-Ting and Nakazato, Hiroshi and Meng, Jie},
journal = {Linear Algebra and its Applications},
volume = {582},
pages = {76--98},
year = {2019},
publisher = {Elsevier},
url = {https://www.sciencedirect.com/science/article/pii/S0024379519303301}
}
- [53]M.-T. Chien, C.-K. Li, and H. Nakazato, “The diameter and width of higher rank numerical ranges,” Linear and Multilinear Algebra, vol. 0, pp. 1–17, 2020, [Online]. Available at: https://www.tandfonline.com/doi/abs/10.1080/03081087.2019.1710105.
@article{chien2020diameter,
title = {The diameter and width of higher rank numerical ranges},
author = {Chien, Mao-Ting and Li, Chi-Kwong and Nakazato, Hiroshi},
journal = {Linear and Multilinear Algebra},
pages = {1--17},
volume = {0},
year = {2020},
publisher = {Taylor and Francis},
url = {https://www.tandfonline.com/doi/abs/10.1080/03081087.2019.1710105}
}
- [54]J. Czartowski, K. Szymański, B. Gardas, Y. V. Fyodorov, and K. Życzkowski, “Separability gap and large-deviation entanglement criterion,” Physical Review A, vol. 100, no. 4, p. 042326, 2019, [Online]. Available at: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.100.042326.
@article{czartowskiseparability,
title = {Separability gap and large-deviation entanglement criterion},
author = {Czartowski, Jakub and Szymański, Konrad and Gardas, Bartłomiej and Fyodorov, Yan V and Życzkowski, Karol},
journal = {Physical Review A},
volume = {100},
number = {4},
pages = {042326},
year = {2019},
publisher = {APS},
url = {https://journals.aps.org/pra/abstract/10.1103/PhysRevA.100.042326}
}
- [55]K. Ryszard, L. Paulina, and P. Łukasz, “Perturbation of the numerical range of unitary matrices,” arXiv preprint arXiv: 2002.05553v1, vol. 0, 2020, [Online]. Available at: https://arxiv.org/abs/2002.05553.
@article{kukulski2020,
title = {Perturbation of the numerical range of unitary matrices},
author = {Ryszard, Kukulski and Paulina, Lewandowska and Łukasz, Pawela},
journal = {arXiv preprint arXiv: 2002.05553v1},
year = {2020},
volume = {0},
url = {https://arxiv.org/abs/2002.05553}
}
- [56]K. J. Szymański and K. Życzkowski, “Geometric and algebraic origins of additive uncertainty relations,” Journal of Physics A: Mathematical and Theoretical, vol. 0, 2019, [Online]. Available at: https://iopscience.iop.org/article/10.1088/1751-8121/ab4543/meta.
@article{szymanski2019geometric,
title = {Geometric and algebraic origins of additive uncertainty relations},
author = {Szymański, Konrad Jan and Życzkowski, Karol},
journal = {Journal of Physics A: Mathematical and Theoretical},
year = {2019},
volume = {0},
publisher = {IOP Publishing},
url = {https://iopscience.iop.org/article/10.1088/1751-8121/ab4543/meta}
}
- [57]R. Koide and H. Nakazato, “The q-numerical range of a certain 3\times 3 matrix,” International Mathematical Forum3, vol. 0, pp. 1001–1010, 2008, [Online]. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.672.1372&rep=rep1&type=pdf.
@article{koide2008q,
title = {The q-numerical range of a certain 3$\times$ 3 matrix},
author = {Koide, Ryuusuke and Nakazato, Hiroshi},
journal = {International Mathematical Forum3},
pages = {1001--1010},
year = {2008},
volume = {0},
publisher = {Citeseer},
url = {http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.672.1372&rep=rep1&type=pdf}
}
- [58]C.-K. Li, “q-Numerical ranges of normal and convex matrices,” Linear and Multilinear Algebra, vol. 43, no. 4, pp. 377–384, 1998, [Online]. Available at: https://www.tandfonline.com/doi/abs/10.1080/03081089808818538?journalCode=glma20.
@article{li1998q,
title = {q-Numerical ranges of normal and convex matrices},
author = {Li, Chi-Kwong},
journal = {Linear and Multilinear Algebra},
volume = {43},
number = {4},
pages = {377--384},
year = {1998},
publisher = {Taylor \& Francis},
url = {https://www.tandfonline.com/doi/abs/10.1080/03081089808818538?journalCode=glma20}
}
- [59]I. M. Spitkovsky and S. Weis, “Signatures of quantum phase transitions from the boundary of the numerical range,” Journal of mathematical physics, vol. 59, no. 12, p. 121901, 2018, [Online]. Available at: https://aip.scitation.org/doi/abs/10.1063/1.5017904.
@article{spitkovsky2018signatures,
title = {Signatures of quantum phase transitions from the boundary of the numerical range},
author = {Spitkovsky, Ilya M and Weis, Stephan},
journal = {Journal of mathematical physics},
volume = {59},
number = {12},
pages = {121901},
year = {2018},
publisher = {AIP Publishing},
url = {https://aip.scitation.org/doi/abs/10.1063/1.5017904}
}
- [60]J. Antezana, G. Larotonda, and A. Varela, “Optimal paths for symmetric actions in the unitary group,” Communications in Mathematical Physics, vol. 328, no. 2, pp. 481–497, 2014, [Online]. Available at: https://link.springer.com/article/10.1007/s00220-014-2041-x.
@article{antezana2014optimal,
title = {Optimal paths for symmetric actions in the unitary group},
author = {Antezana, Jorge and Larotonda, Gabriel and Varela, Alejandro},
journal = {Communications in Mathematical Physics},
volume = {328},
number = {2},
pages = {481--497},
year = {2014},
publisher = {Springer},
url = {https://link.springer.com/article/10.1007/s00220-014-2041-x}
}
- [61]M. Zahraei, G. Aghamollaei, and others, “Higher rank numerical ranges of rectangular matrices,” Annals of Functional Analysis, vol. 6, no. 2, pp. 133–142, 2015, [Online]. Available at: https://projecteuclid.org/euclid.afa/1418997772.
@article{zahraei2015higher,
title = {Higher rank numerical ranges of rectangular matrices},
author = {Zahraei, Mohsen and Aghamollaei, Gholamreza and others},
journal = {Annals of Functional Analysis},
volume = {6},
number = {2},
pages = {133--142},
year = {2015},
publisher = {Tusi Mathematical Research Group},
url = {https://projecteuclid.org/euclid.afa/1418997772}
}
- [62]I. M. Spitkovsky, “A note on the maximal numerical range,” arXiv preprint arXiv:1803.10516, vol. 0, 2018, [Online]. Available at: https://arxiv.org/abs/1803.10516.
@article{spitkovsky2018note,
title = {A note on the maximal numerical range},
author = {Spitkovsky, Ilya M},
journal = {arXiv preprint arXiv:1803.10516},
year = {2018},
volume = {0},
url = {https://arxiv.org/abs/1803.10516}
}
- [63]A. Aretaki and J. Maroulas, “Investigating the Numerical Range of Non Square Matrices,” arXiv preprint arXiv:0904.4325, vol. 0, 2009, [Online]. Available at: https://arxiv.org/abs/0904.4325.
@article{aretaki2009investigating,
title = {Investigating the Numerical Range of Non Square Matrices},
author = {Aretaki, Aikaterini and Maroulas, John},
journal = {arXiv preprint arXiv:0904.4325},
year = {2009},
volume = {0},
url = {https://arxiv.org/abs/0904.4325}
}
- [64]M. Marcus and M. Sandy, “Conditions for the generalized numerical range to be real,” Linear algebra and its applications, vol. 71, pp. 219–239, 1985, [Online]. Available at: https://core.ac.uk/download/pdf/82435859.pdf.
@article{marcus1985conditions,
title = {Conditions for the generalized numerical range to be real},
author = {Marcus, Marvin and Sandy, Markus},
journal = {Linear algebra and its applications},
volume = {71},
pages = {219--239},
year = {1985},
publisher = {Elsevier},
url = {https://core.ac.uk/download/pdf/82435859.pdf}
}
- [65]M.-T. Chien and H. Nakazato, “Davis–Wielandt shell and q-numerical range,” Linear Algebra and its Applications, vol. 340, no. 1-3, pp. 15–31, 2002, [Online]. Available at: https://core.ac.uk/download/pdf/82029923.pdf.
@article{chien2002davis,
title = {Davis--Wielandt shell and q-numerical range},
author = {Chien, Mao-Ting and Nakazato, Hiroshi},
journal = {Linear Algebra and its Applications},
volume = {340},
number = {1-3},
pages = {15--31},
year = {2002},
publisher = {Elsevier},
url = {https://core.ac.uk/download/pdf/82029923.pdf}
}
- [66]M.-T. Chien and H. Nakazato, “The q-numerical range of a reducible matrix via a normal operator,” Linear Algebra and its Applications, vol. 419, no. 2-3, pp. 440–465, 2006, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0024379506002606.
@article{chien2006q,
title = {The q-numerical range of a reducible matrix via a normal operator},
author = {Chien, Mao-Ting and Nakazato, Hiroshi},
journal = {Linear Algebra and its Applications},
volume = {419},
number = {2-3},
pages = {440--465},
year = {2006},
publisher = {North-Holland},
url = {https://www.sciencedirect.com/science/article/pii/S0024379506002606}
}
- [67]N.-K. Tsing, “The constrained bilinear form and the C-numerical range,” Linear Algebra and its Applications, vol. 56, pp. 195–206, 1984, [Online]. Available at: https://core.ac.uk/download/pdf/81931476.pdf.
@article{tsing1984constrained,
title = {The constrained bilinear form and the C-numerical range},
author = {Tsing, Nam-Kiu},
journal = {Linear Algebra and its Applications},
volume = {56},
pages = {195--206},
year = {1984},
publisher = {Elsevier},
url = {https://core.ac.uk/download/pdf/81931476.pdf}
}
- [68]C.-K. Li, “C-numerical ranges and C-numerical radii,” Linear and Multilinear Algebra, vol. 37, no. 1-3, pp. 51–82, 1994, [Online]. Available at: https://www.tandfonline.com/doi/abs/10.1080/03081089408818312?journalCode=glma20.
@article{li1994c,
title = {C-numerical ranges and C-numerical radii},
author = {Li, Chi-Kwong},
journal = {Linear and Multilinear Algebra},
volume = {37},
number = {1-3},
pages = {51--82},
year = {1994},
publisher = {Taylor & Francis},
url = {https://www.tandfonline.com/doi/abs/10.1080/03081089408818312?journalCode=glma20}
}
- [69]R. Westwick, “A theorem on numerical range,” Linear and Multilinear Algebra, vol. 2, no. 4, pp. 311–315, 1975, [Online]. Available at: https://www.tandfonline.com/doi/abs/10.1080/03081087508817074?journalCode=glma20.
@article{westwick1975theorem,
title = {A theorem on numerical range},
author = {Westwick, R},
journal = {Linear and Multilinear Algebra},
volume = {2},
number = {4},
pages = {311--315},
year = {1975},
publisher = {Taylor & Francis},
url = {https://www.tandfonline.com/doi/abs/10.1080/03081087508817074?journalCode=glma20}
}
- [70]K. Szymański, S. Weis, and K. Życzkowski, “Classification of joint numerical ranges of three hermitian matrices of size three,” Linear Algebra and its Applications, vol. 0, 2017, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0024379517306456.
@article{szymanski2017classification,
title = {Classification of joint numerical ranges of three hermitian matrices of size three},
author = {Szymański, Konrad and Weis, Stephan and Życzkowski, Karol},
journal = {Linear Algebra and its Applications},
year = {2017},
volume = {0},
publisher = {Elsevier},
url = {https://www.sciencedirect.com/science/article/pii/S0024379517306456}
}
- [71]O. Toeplitz, “Das algebraische Analogon zu einem Satze von Fejer,” Mathematische Zeitschrift, vol. 2, no. 1, pp. 187–197, 1918, [Online]. Available at: https://link.springer.com/article/10.1007/BF01212904.
@article{toeplitz1918algebraische,
title = {Das algebraische Analogon zu einem Satze von Fejer},
author = {Toeplitz, O.},
journal = {Mathematische Zeitschrift},
volume = {2},
number = {1},
pages = {187--197},
year = {1918},
publisher = {Springer},
url = {https://link.springer.com/article/10.1007/BF01212904}
}
- [72]F. Hausdorff, “Der Wertevorrat einer Bilinearform,” Mathematische Zeitschrift, vol. 3, no. 1, pp. 314–316, 1919, [Online]. Available at: https://link.springer.com/article/10.1007/BF01292610.
@article{hausdorff1919wertvorrat,
title = {Der Wertevorrat einer Bilinearform},
author = {Hausdorff, F.},
journal = {Mathematische Zeitschrift},
volume = {3},
number = {1},
pages = {314--316},
year = {1919},
publisher = {Springer},
url = {https://link.springer.com/article/10.1007/BF01292610}
}
- [73]F. D. Murnaghan, “On the field of values of a square matrix,” Proceedings of the National Academy of Sciences of the United States of America, vol. 18, no. 3, p. 246, 1932, [Online]. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1076200/.
@article{murnaghan1932field,
title = {On the field of values of a square matrix},
author = {Murnaghan, F. D},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
volume = {18},
number = {3},
pages = {246},
year = {1932},
publisher = {National Academy of Sciences},
url = {https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1076200/}
}
- [74]R. Kippenhahn, “Uber den Wertevorrat einer matrix,” Mathematische Nachrichten, vol. 6, no. 3-4, pp. 193–228, 1951, [Online]. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/mana.19510060306.
@article{kippenhahn1951wertevorrat,
title = {Uber den Wertevorrat einer matrix},
author = {Kippenhahn, R.},
journal = {Mathematische Nachrichten},
volume = {6},
number = {3-4},
pages = {193--228},
year = {1951},
publisher = {Wiley Online Library},
url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/mana.19510060306}
}
- [75]R. Horn and C. Johnson, Topics in matrix analysis. Cambridge university press, 1994.
@book{horn1994topics,
title = {Topics in matrix analysis},
author = {Horn, R. and Johnson, C.},
year = {1994},
publisher = {Cambridge university press},
url = {https://books.google.pl/books?hl=pl&lr=&id=LeuNXB2bl5EC&oi=fnd&pg=PR7&dq=Topics+in+matrix+analysis&ots=SoInB5ttwd&sig=fkBHTdWLHagVy9S1-oG-hIPWqLs&redir_esc=y#v=onepage&q=Topics%20in%20matrix%20analysis&f=false}
}
- [76]K. E. Gustafson and D. K. M. Rao, Numerical range: The Field of Values of Linear Operators and Matrices. Springer, 1997.
@book{gustafson1997numerical,
title = {Numerical range: The Field of Values of Linear Operators and Matrices},
author = {Gustafson, K. E. and Rao, D. K. M.},
year = {1997},
publisher = {Springer},
url = {https://dx.doi.org/10.1007/978-1-4613-8498-4_1}
}
- [77]E. Gutkin, “The Toeplitz-Hausdorff theorem revisited: relating linear algebra and geometry,” The Mathematical Intelligencer, vol. 26, no. 1, pp. 8–14, 2004, [Online]. Available at: https://link.springer.com/article/10.1007/BF02985393.
@article{gutkin2004toeplitz,
title = {The Toeplitz-Hausdorff theorem revisited: relating linear algebra and geometry},
author = {Gutkin, E.},
journal = {The Mathematical Intelligencer},
volume = {26},
number = {1},
pages = {8--14},
year = {2004},
publisher = {Springer},
url = {https://link.springer.com/article/10.1007/BF02985393}
}
- [78]C. K. Li, “A simple proof of the elliptical range theorem,” Proceedings of the American Mathematical Society, vol. 124, no. 7, pp. 1985–1986, 1996, [Online]. Available at: https://www.researchgate.net/profile/Chi-Kwong_Li/publication/245067615_A_simple_proof_of_the_elliptical_range_theorem/links/540c53800cf2df04e753cb02.pdf.
@article{li1996simple,
title = {A simple proof of the elliptical range theorem},
author = {Li, C. K.},
journal = {Proceedings of the American Mathematical Society},
volume = {124},
number = {7},
pages = {1985--1986},
year = {1996},
url = {https://www.researchgate.net/profile/Chi-Kwong_Li/publication/245067615_A_simple_proof_of_the_elliptical_range_theorem/links/540c53800cf2df04e753cb02.pdf}
}
- [79]D. S. Keeler, L. Rodman, and I. M. Spitkovsky, “The numerical range of 3x3 matrices,” Linear Algebra and its Applications, vol. 252, no. 1-3, pp. 115–139, 1997, [Online]. Available at: https://dx.doi.org/10.1016/0024-3795(95)00674-5.
@article{keeler1997numerical,
title = {The numerical range of 3x3 matrices},
author = {Keeler, D. S. and Rodman, L. and Spitkovsky, I. M.},
journal = {Linear Algebra and its Applications},
volume = {252},
number = {1-3},
pages = {115 - 139},
year = {1997},
url = {https://dx.doi.org/10.1016/0024-3795(95)00674-5}
}
- [80]M. Crouzeix, “Open problems on Numerical range and functional calculus.” 2006, [Online]. Available at: https://perso.univ-rennes1.fr/michel.crouzeix/publis/NopPb.pdf.
@misc{crouzeix2006open,
title = {Open problems on Numerical range and functional calculus},
author = {Crouzeix, M.},
year = {2006},
url = {https://perso.univ-rennes1.fr/michel.crouzeix/publis/NopPb.pdf}
}
- [81]C. R. Johnson, “Numerical ranges of principal submatrices,” Linear Algebra and its Applications, vol. 1, pp. 23–34, 1981, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/0024379581901646.
@article{johnson1981numerical,
title = {Numerical ranges of principal submatrices},
author = {Johnson, C. R.},
journal = {Linear Algebra and its Applications},
volume = {1},
pages = {23-34},
year = {1981},
url = {https://www.sciencedirect.com/science/article/pii/0024379581901646}
}
- [82]K. Szymański, “Uncertainty relations and joint numerical ranges,” arXiv preprint arXiv:1707.03464, vol. 0, 2017, [Online]. Available at: https://arxiv.org/abs/1707.03464.
@article{szymanski2017uncertainty,
title = {Uncertainty relations and joint numerical ranges},
author = {Szymański, Konrad},
journal = {arXiv preprint arXiv:1707.03464},
year = {2017},
volume = {0},
url = {https://arxiv.org/abs/1707.03464}
}
- [83]C. R. Johnson, “Normality and the numerical range,” Linear Algebra and its Applications, vol. 37, no. 1, pp. 89–94, 1976, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/002437957690080X.
@article{johnson1976normality,
title = {Normality and the numerical range},
author = {Johnson, C. R.},
journal = {Linear Algebra and its Applications},
volume = {37},
number = {1},
pages = {89--94},
year = {1976},
publisher = {Elsevier},
url = {https://www.sciencedirect.com/science/article/pii/002437957690080X}
}
- [84]P. Nylen and T. Y. Tam, “Numerical range of a doubly stochastic matrix,” Linear Algebra and Its Applications, vol. 153, pp. 161–176, 1991, [Online]. Available at: https://core.ac.uk/download/pdf/82400308.pdf.
@article{nylen1991numerical,
title = {Numerical range of a doubly stochastic matrix},
author = {Nylen, P. and Tam, T. Y.},
journal = {Linear Algebra and Its Applications},
volume = {153},
pages = {161--176},
year = {1991},
publisher = {Elsevier},
url = {https://core.ac.uk/download/pdf/82400308.pdf}
}
- [85]P. J. Psarrakos and M. J. Tsatsomeros, “Numerical range:(in) a matrix nutshell.” Department of Mathematics, Washington State University, 2002, [Online]. Available at: http://www.sci.wsu.edu/math/faculty/tsat/files/numrange.pdf.
@misc{psarrakos2002numerical,
title = {Numerical range:(in) a matrix nutshell},
author = {Psarrakos, Panayiotis J and Tsatsomeros, Michael J},
year = {2002},
publisher = {Department of Mathematics, Washington State University},
url = {http://www.sci.wsu.edu/math/faculty/tsat/files/numrange.pdf}
}
- [86]C. Chorianopoulos, S. Karanasios, and P. Psarrakos, “A definition of numerical range of rectangular matrices,” Linear and Multilinear Algebra, vol. 57, no. 5, pp. 459–475, 2009, [Online]. Available at: https://www.tandfonline.com/doi/abs/10.1080/03081080802466365.
@article{chorianopoulos2009definition,
title = {A definition of numerical range of rectangular matrices},
author = {Chorianopoulos, Ch. and Karanasios, S. and Psarrakos, P.},
journal = {Linear and Multilinear Algebra},
volume = {57},
number = {5},
pages = {459--475},
year = {2009},
publisher = {Taylor & Francis},
url = {https://www.tandfonline.com/doi/abs/10.1080/03081080802466365}
}
- [87]J. H. Shapiro, “Notes on the numerical range,” Lecture Notes, Michigan State University. 2004, [Online]. Available at: https://pdfs.semanticscholar.org/c6ba/fcc5e5fe8ba105e3dc86b498f95022db1984.pdf.
@misc{shapiro2004notes,
title = {Notes on the numerical range},
author = {Shapiro, J. H.},
journal = {Lecture Notes, Michigan State University},
year = {2004},
url = {https://pdfs.semanticscholar.org/c6ba/fcc5e5fe8ba105e3dc86b498f95022db1984.pdf}
}
- [88]P. Skoufranis, “Numerical Ranges of Operators.” 2012.
@misc{skoufranis2012numerical,
title = {Numerical Ranges of Operators},
author = {Skoufranis, P.},
year = {2012}
}
- [89]R. Carden, “A simple algorithm for the inverse field of values problem,” Inverse Problems, vol. 25, no. 11, p. 115019, 2009, [Online]. Available at: https://iopscience.iop.org/article/10.1088/0266-5611/25/11/115019/pdf.
@article{carden2009simple,
title = {A simple algorithm for the inverse field of values problem},
author = {Carden, Russell},
journal = {Inverse Problems},
volume = {25},
number = {11},
pages = {115019},
year = {2009},
publisher = {IOP Publishing},
url = {https://iopscience.iop.org/article/10.1088/0266-5611/25/11/115019/pdf}
}
- [90]M. Goldberg and E. Straus, “On characterizations and integrals of generalized numerical ranges,” Pacific Journal of Mathematics, vol. 69, no. 1, pp. 45–54, 1977, [Online]. Available at: https://msp.org/pjm/1977/69-1/p06.xhtml.
@article{goldberg1977characterizations,
title = {On characterizations and integrals of generalized numerical ranges},
author = {Goldberg, Moshe and Straus, Ernst},
journal = {Pacific Journal of Mathematics},
volume = {69},
number = {1},
pages = {45--54},
year = {1977},
url = {https://msp.org/pjm/1977/69-1/p06.xhtml}
}
- [91]M. Goldberg, “On certain finite dimensional numerical ranges and numerical radii,” Linear and Multilinear Algebra, vol. 7, no. 4, pp. 329–342, 1979, [Online]. Available at: https://www.tandfonline.com/doi/abs/10.1080/03081087908817291?journalCode=glma20.
@article{goldberg1979certain,
title = {On certain finite dimensional numerical ranges and numerical radii},
author = {Goldberg, Moshe},
journal = {Linear and Multilinear Algebra},
volume = {7},
number = {4},
pages = {329--342},
year = {1979},
publisher = {Taylor & Francis},
url = {https://www.tandfonline.com/doi/abs/10.1080/03081087908817291?journalCode=glma20}
}
- [92]J. Stampfli, “The norm of a derivation,” Pacific journal of mathematics, vol. 33, no. 3, pp. 737–747, 1970, [Online]. Available at: https://msp.org/pjm/1970/33-3/p18.xhtml.
@article{stampfli1970norm,
title = {The norm of a derivation},
author = {Stampfli, Joseph},
journal = {Pacific journal of mathematics},
volume = {33},
number = {3},
pages = {737--747},
year = {1970},
publisher = {Mathematical Sciences Publishers},
url = {https://msp.org/pjm/1970/33-3/p18.xhtml}
}
- [93]M. Fiedler, “Geometry of the numerical range of matrices,” Linear Algebra and its Applications, vol. 37, pp. 81–96, 1981, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/0024379581901695.
@article{fiedler1981geometry,
title = {Geometry of the numerical range of matrices},
author = {Fiedler, M.},
journal = {Linear Algebra and its Applications},
volume = {37},
pages = {81--96},
year = {1981},
publisher = {Elsevier},
url = {https://www.sciencedirect.com/science/article/pii/0024379581901695}
}
- [94]E. A. Jonckheere, F. Ahmad, and E. Gutkin, “Differential topology of numerical range,” Linear algebra and its applications, vol. 279, no. 1, pp. 227–254, 1998, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0024379598000214.
@article{jonckheere1998differential,
title = {Differential topology of numerical range},
author = {Jonckheere, E. A. and Ahmad, F. and Gutkin, E.},
journal = {Linear algebra and its applications},
volume = {279},
number = {1},
pages = {227--254},
year = {1998},
publisher = {Elsevier},
url = {https://www.sciencedirect.com/science/article/pii/S0024379598000214}
}
- [95]D. Henrion, “Semidefinite geometry of the numerical range,” Electronic Journal of Linear Algebra, vol. 20, pp. 322–332, 2010, [Online]. Available at: https://www.math.technion.ac.il/iic/ela/ela-articles/articles/vol20_pp322-332.pdf.
@article{henrion2010semidefinite,
title = {Semidefinite geometry of the numerical range},
author = {Henrion, D.},
journal = {Electronic Journal of Linear Algebra},
volume = {20},
pages = {322-332},
year = {2010},
url = {https://www.math.technion.ac.il/iic/ela/ela-articles/articles/vol20_pp322-332.pdf}
}
- [96]J. W. Helton and I. M. Spitkovsky, “The possible shapes of numerical ranges,” arXiv preprint arXiv:1104.4587, vol. 0, 2011, [Online]. Available at: https://arxiv.org/abs/1104.4587.
@article{helton2011possible,
title = {The possible shapes of numerical ranges},
author = {Helton, J. W. and Spitkovsky, I. M.},
journal = {arXiv preprint arXiv:1104.4587},
year = {2011},
volume = {0},
url = {https://arxiv.org/abs/1104.4587}
}
- [97]M. T. Chien and Y. H. Lin, “On the area of numerical range,” Ssoochow Journal of Mathematics, vol. 26, no. 3, pp. 255–270, 2000, [Online]. Available at: http://mathlab.math.scu.edu.tw/mp/pdf/S26N33.pdf.
@article{chien2000area,
title = {On the area of numerical range},
author = {Chien, M. T. and Lin, Y. H.},
journal = {Ssoochow Journal of Mathematics},
volume = {26},
number = {3},
pages = {255--270},
year = {2000},
publisher = {Soochow University},
url = {http://mathlab.math.scu.edu.tw/mp/pdf/S26N33.pdf}
}
- [98]J. Eldred, L. Rodman, and I. Spitkovsky, “Numerical ranges of companion matrices: flat portions on the boundary,” Linear and Multilinear Algebra, vol. 60, no. 11-12, pp. 1295–1311, 2012, [Online]. Available at: https://www.tandfonline.com/doi/abs/10.1080/03081087.2011.634415.
@article{eldred2012numerical,
title = {Numerical ranges of companion matrices: flat portions on the boundary},
author = {Eldred, Jeffrey and Rodman, Leiba and Spitkovsky, Ilya},
journal = {Linear and Multilinear Algebra},
volume = {60},
number = {11-12},
pages = {1295--1311},
year = {2012},
publisher = {Taylor \& Francis},
url = {https://www.tandfonline.com/doi/abs/10.1080/03081087.2011.634415}
}
- [99]J. Maroulas and P. Psarrakos, “Geometrical properties of numerical range of matrix polynomials,” Computers & Mathematics with Applications, vol. 31, no. 4-5, pp. 41–47, 1996, [Online]. Available at: https://core.ac.uk/download/pdf/82399792.pdf.
@article{maroulas1996geometrical,
title = {Geometrical properties of numerical range of matrix polynomials},
author = {Maroulas, J and Psarrakos, P},
journal = {Computers \& Mathematics with Applications},
volume = {31},
number = {4-5},
pages = {41--47},
year = {1996},
publisher = {Pergamon},
url = {https://core.ac.uk/download/pdf/82399792.pdf}
}
- [100]M. Goldberg and E. G. Straus, “Elementary inclusion relations for generalized numerical ranges,” Linear Algebra and Its Applications, vol. 18, no. 1, pp. 1–24, 1977, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/0024379577900751.
@article{goldberg1977elementary,
title = {Elementary inclusion relations for generalized numerical ranges},
author = {Goldberg, Moshe and Straus, EG},
journal = {Linear Algebra and Its Applications},
volume = {18},
number = {1},
pages = {1--24},
year = {1977},
publisher = {Elsevier},
url = {https://www.sciencedirect.com/science/article/pii/0024379577900751}
}
- [101]I. M. Spitkovsky and S. Weis, “Pre-images of extreme points of the numerical range, and applications,” arXiv preprint arXiv:1509.05676, vol. 0, 2015, [Online]. Available at: https://arxiv.org/abs/1509.05676.
@article{spitkovsky2015pre,
title = {Pre-images of extreme points of the numerical range, and applications},
author = {Spitkovsky, Ilya M and Weis, Stephan},
journal = {arXiv preprint arXiv:1509.05676},
year = {2015},
volume = {0},
url = {https://arxiv.org/abs/1509.05676}
}
- [102]E. Militzer, L. J. Patton, I. M. Spitkovsky, and M.-C. Tsai, “Numerical Ranges of 4-by-4 Nilpotent Matrices: Flat Portions on the Boundary,” in Large Truncated Toeplitz Matrices, Toeplitz Operators, and Related Topics, Springer, 2017, pp. 561–591.
@incollection{militzer2017numerical,
title = {Numerical Ranges of 4-by-4 Nilpotent Matrices: Flat Portions on the Boundary},
author = {Militzer, Erin and Patton, Linda J and Spitkovsky, Ilya M and Tsai, Ming-Cheng},
booktitle = {Large Truncated Toeplitz Matrices, Toeplitz Operators, and Related Topics},
pages = {561--591},
year = {2017},
publisher = {Springer},
url = {https://link.springer.com/chapter/10.1007/978-3-319-49182-0_23}
}
- [103]E. Gutkin, E. A. Jonckheere, and M. Karow, “Convexity of the joint numerical range: topological and differential geometric viewpoints,” Linear algebra and its applications, vol. 376, pp. 143–171, 2004, [Online]. Available at: https://www.mis.mpg.de/de/publications/mis-preprints/2003/prepr2003-1.html.
@article{gutkin2004convexity,
title = {Convexity of the joint numerical range: topological and differential geometric viewpoints},
author = {Gutkin, E. and Jonckheere, E.A. and Karow, M.},
journal = {Linear algebra and its applications},
volume = {376},
pages = {143--171},
year = {2004},
publisher = {Elsevier},
url = {https://www.mis.mpg.de/de/publications/mis-preprints/2003/prepr2003-1.html}
}
- [104]N. Krupnik and I. M. Spitkovsky, “Sets of matrices with given joint numerical range,” Linear algebra and its applications, vol. 419, no. 2, pp. 569–585, 2006, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0024379506002709.
@article{krupnik2006sets,
title = {Sets of matrices with given joint numerical range},
author = {Krupnik, N. and Spitkovsky, I. M.},
journal = {Linear algebra and its applications},
volume = {419},
number = {2},
pages = {569--585},
year = {2006},
publisher = {Elsevier},
url = {https://www.sciencedirect.com/science/article/pii/S0024379506002709}
}
- [105]A. Abdollahi, “The polynomial numerical hull of a matrix and algorithms for computing the numerical range,” Applied mathematics and computation, vol. 180, no. 2, pp. 635–640, 2006, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S009630030600052X.
@article{abdollahi2006the,
title = {The polynomial numerical hull of a matrix and algorithms for computing the numerical range},
author = {Abdollahi, A},
journal = {Applied mathematics and computation},
volume = {180},
number = {2},
pages = {635--640},
year = {2006},
publisher = {Elsevier},
url = {https://www.sciencedirect.com/science/article/pii/S009630030600052X}
}
- [106]H. Li and X. Liu, “Elliptic Numerical Ranges of 4 x 4 Matrices,” in 2009 ETP International Conference on Future Computer and Communication, IEEE, 2009, pp. 190–193.
@incollection{gau2006elliptic,
title = {Elliptic Numerical Ranges of 4 x 4 Matrices},
author = {Li, Hongkui and Liu, Xueting},
booktitle = {2009 ETP International Conference on Future Computer and Communication},
pages = {190--193},
year = {2009},
publisher = {IEEE},
url = {https://ieeexplore.ieee.org/abstract/document/5235673}
}
- [107]Z. Puchała, P. Gawron, J. A. Miszczak, Ł. Skowronek, M. D. Choi, and K. Życzkowski, “Product numerical range in a space with tensor product structure,” Linear Algebra and its Applications, vol. 434, no. 1, pp. 327–342, 2011, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0024379510004349.
@article{puchala2011product,
title = {Product numerical range in a space with tensor product structure},
author = {Puchała, Z. and Gawron, P. and Miszczak, J.A. and Skowronek, Ł. and Choi, M.D. and Życzkowski, K.},
journal = {Linear Algebra and its Applications},
volume = {434},
number = {1},
pages = {327--342},
year = {2011},
publisher = {Elsevier},
url = {https://www.sciencedirect.com/science/article/pii/S0024379510004349}
}
- [108]J. W. Helton and I. M. Spitkovsky, “The possible shapes of numerical ranges,” arXiv:1104.4587, vol. 1, pp. 1–4, 2011, [Online]. Available at: https://arxiv.org/abs/1104.4587.
@article{helton2011the,
title = {The possible shapes of numerical ranges},
author = {Helton, J. W. and Spitkovsky, I. M.},
journal = {arXiv:1104.4587},
volume = {1},
pages = {1-4},
year = {2011},
url = {https://arxiv.org/abs/1104.4587}
}
- [109]W.-S. Cheung and C.-K. Li, “Elementary proofs for some results on the circular symmetry of the numerical range,” Linear and Multilinear Algebra, vol. 61, no. 5, pp. 596–602, 2013, [Online]. Available at: https://www.tandfonline.com/doi/abs/10.1080/03081087.2012.696251.
@article{cheung2012elementary,
title = {Elementary proofs for some results on the circular symmetry of the numerical range},
author = {Cheung, Wai-Shun and Li, Chi-Kwong},
journal = {Linear and Multilinear Algebra},
volume = {61},
number = {5},
pages = {596--602},
year = {2013},
publisher = {Taylor \& Francis},
url = {https://www.tandfonline.com/doi/abs/10.1080/03081087.2012.696251}
}
- [110]J. Jurkowski, A. Rutkowski, and D. Chruściński, “Local numerical range for a class of 2⊗ d Hermitian operators,” Open Systems & Information Dynamics, vol. 17, no. 04, pp. 347–359, 2010, [Online]. Available at: https://www.worldscientific.com/doi/abs/10.1142/S1230161210000229.
@article{jurkowski2010local,
title = {Local numerical range for a class of 2⊗ d Hermitian operators},
author = {Jurkowski, Jacek and Rutkowski, Adam and Chruściński, D},
journal = {Open Systems \& Information Dynamics},
volume = {17},
number = {04},
pages = {347--359},
year = {2010},
publisher = {World Scientific},
url = {https://www.worldscientific.com/doi/abs/10.1142/S1230161210000229}
}
- [111]M. D. Choi, J. A. Holbrook, D. W. Kribs, and K. Życzkowski, “Higher-rank numerical ranges of unitary and normal matrices,” Operators and Matrices, vol. 1, pp. 409–426, 2007, [Online]. Available at: https://www.semanticscholar.org/paper/HIGHER-RANK-NUMERICAL-RANGES-OF-UNITARY-AND-NORMAL-Choi-Holbrook/5b13b6b5a92ce54bbf1699375a3ba26cbceb90ae.
@article{choi2007higher,
title = {Higher-rank numerical ranges of unitary and normal matrices},
author = {Choi, M. D. and Holbrook, J. A. and Kribs, D. W and Życzkowski, K.},
journal = {Operators and Matrices},
year = {2007},
volume = {1},
pages = {409--426},
url = {https://www.semanticscholar.org/paper/HIGHER-RANK-NUMERICAL-RANGES-OF-UNITARY-AND-NORMAL-Choi-Holbrook/5b13b6b5a92ce54bbf1699375a3ba26cbceb90ae}
}
- [112]M. D. Choi, M. Giesinger, J. A. Holbrook, and D. W. Kribs, “Geometry of higher-rank numerical ranges,” Linear and Multilinear Algebra, vol. 56, no. 1-2, pp. 53–64, 2008, [Online]. Available at: https://www.tandfonline.com/doi/abs/10.1080/03081080701336545.
@article{choi2008geometry,
title = {Geometry of higher-rank numerical ranges},
author = {Choi, M. D. and Giesinger, M. and Holbrook, J. A. and Kribs, D. W.},
journal = {Linear and Multilinear Algebra},
volume = {56},
number = {1-2},
pages = {53--64},
year = {2008},
publisher = {Taylor & Francis},
url = {https://www.tandfonline.com/doi/abs/10.1080/03081080701336545}
}
- [113]H. J. Woerdeman, “The higher rank numerical range is convex,” Linear and Multilinear Algebra, vol. 56, no. 1-2, pp. 65–67, 2008, [Online]. Available at: https://www.tandfonline.com/doi/abs/10.1080/03081080701352211.
@article{woerdeman2008higher,
title = {The higher rank numerical range is convex},
author = {Woerdeman, H. J.},
journal = {Linear and Multilinear Algebra},
volume = {56},
number = {1-2},
pages = {65--67},
year = {2008},
publisher = {Taylor & Francis},
url = {https://www.tandfonline.com/doi/abs/10.1080/03081080701352211}
}
- [114]C. K. Li and N. S. Sze, “Canonical forms, higher rank numerical ranges, totally isotropic subspaces, and matrix equations,” Proceedings of the American Mathematical Society, vol. 136, no. 9, pp. 3013–3023, 2008, [Online]. Available at: https://www.ams.org/journals/proc/2008-136-09/S0002-9939-08-09536-1/.
@article{li2008canonical,
title = {Canonical forms, higher rank numerical ranges, totally isotropic subspaces, and matrix equations},
author = {Li, C. K and Sze, N. S.},
journal = {Proceedings of the American Mathematical Society},
volume = {136},
number = {9},
pages = {3013--3023},
year = {2008},
url = {https://www.ams.org/journals/proc/2008-136-09/S0002-9939-08-09536-1/}
}
- [115]C. K. Li, Y. T. Poon, and N. S. Sze, “Condition for the higher rank numerical range to be non-empty,” Linear and Multilinear Algebra, vol. 57, no. 4, pp. 365–368, 2009, [Online]. Available at: https://www.tandfonline.com/doi/abs/10.1080/03081080701786384.
@article{li2009condition,
title = {Condition for the higher rank numerical range to be non-empty},
author = {Li, C. K. and Poon, Y. T. and Sze, N. S.},
journal = {Linear and Multilinear Algebra},
volume = {57},
number = {4},
pages = {365--368},
year = {2009},
publisher = {Taylor & Francis},
url = {https://www.tandfonline.com/doi/abs/10.1080/03081080701786384}
}
- [116]H.-L. Gau, C.-K. Li, and P. Y. Wu, “Higher-rank numerical ranges and dilations,” Journal of Operator Theory, vol. 0, pp. 181–189, 2010, [Online]. Available at: https://www.jstor.org/stable/24715918.
@article{gau2010higher,
title = {Higher-rank numerical ranges and dilations},
author = {Gau, Hwa-Long and Li, Chi-Kwong and Wu, Pei Yuan},
journal = {Journal of Operator Theory},
pages = {181--189},
year = {2010},
volume = {0},
publisher = {JSTOR},
url = {https://www.jstor.org/stable/24715918}
}
- [117]M. D. Choi, D. W. Kribs, and K. Życzkowski, “Higher-rank numerical ranges and compression problems,” Linear algebra and its applications, vol. 418, no. 2, pp. 828–839, 2006, [Online]. Available at: https://arxiv.org/abs/math/0511278.
@article{choi2006higher,
title = {Higher-rank numerical ranges and compression problems},
author = {Choi, M. D. and Kribs, D. W. and Życzkowski, K.},
journal = {Linear algebra and its applications},
volume = {418},
number = {2},
pages = {828--839},
year = {2006},
url = {https://arxiv.org/abs/math/0511278}
}
- [118]M.-T. Chien and H. Nakazato, “The boundary of higher rank numerical ranges,” Linear algebra and its applications, vol. 435, no. 11, pp. 2971–2985, 2011, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0024379511004253.
@article{chien2011boundary,
title = {The boundary of higher rank numerical ranges},
author = {Chien, Mao-Ting and Nakazato, Hiroshi},
journal = {Linear algebra and its applications},
volume = {435},
number = {11},
pages = {2971--2985},
year = {2011},
publisher = {Elsevier},
url = {https://www.sciencedirect.com/science/article/pii/S0024379511004253}
}
- [119]H.-L. Gau and P. Y. Wu, “Higher-rank numerical ranges and Kippenhahn polynomials,” Linear Algebra and its Applications, vol. 438, no. 7, pp. 3054–3061, 2013, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0024379512008221.
@article{gau2013higher,
title = {Higher-rank numerical ranges and Kippenhahn polynomials},
author = {Gau, Hwa-Long and Wu, Pei Yuan},
journal = {Linear Algebra and its Applications},
volume = {438},
number = {7},
pages = {3054--3061},
year = {2013},
publisher = {Elsevier},
url = {https://www.sciencedirect.com/science/article/pii/S0024379512008221}
}
- [120]H.-L. Gau, C.-K. Li, Y.-T. Poon, and N.-S. Sze, “Higher rank numerical ranges of normal matrices,” SIAM Journal on Matrix Analysis and Applications, vol. 32, no. 1, pp. 23–43, 2011, [Online]. Available at: https://epubs.siam.org/doi/abs/10.1137/09076430X.
@article{gau2011higher,
title = {Higher rank numerical ranges of normal matrices},
author = {Gau, Hwa-Long and Li, Chi-Kwong and Poon, Yiu-Tung and Sze, Nung-Sing},
journal = {SIAM Journal on Matrix Analysis and Applications},
volume = {32},
number = {1},
pages = {23--43},
year = {2011},
publisher = {SIAM},
url = {https://epubs.siam.org/doi/abs/10.1137/09076430X}
}
- [121]J. Holbrook, N. Mudalige, M. Newman, and R. Pereira, “Bounds on polygons of higher rank numerical ranges,” Linear Algebra and its Applications, vol. 474, pp. 230–242, 2015, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0024379515000166.
@article{holbrook2015bounds,
title = {Bounds on polygons of higher rank numerical ranges},
author = {Holbrook, John and Mudalige, Nishan and Newman, Mike and Pereira, Rajesh},
journal = {Linear Algebra and its Applications},
volume = {474},
pages = {230--242},
year = {2015},
publisher = {Elsevier},
url = {https://www.sciencedirect.com/science/article/pii/S0024379515000166}
}
- [122]G. Najarbashi, S. Ahadpour, M. A. Fasihi, and Y. Tavakoli, “Geometry of a two-qubit state and intertwining quaternionic conformal mapping under local unitary transformations,” Journal of Physics A: Mathematical and Theoretical, vol. 40, no. 24, p. 6481, 2007, [Online]. Available at: https://iopscience.iop.org/article/10.1088/1751-8113/40/24/014.
@article{najarbashi2007geometry,
title = {Geometry of a two-qubit state and intertwining quaternionic conformal mapping under local unitary transformations},
author = {Najarbashi, G and Ahadpour, S and Fasihi, MA and Tavakoli, Y},
journal = {Journal of Physics A: Mathematical and Theoretical},
volume = {40},
number = {24},
pages = {6481},
year = {2007},
publisher = {IOP Publishing},
url = {https://iopscience.iop.org/article/10.1088/1751-8113/40/24/014}
}
- [123]D. W. Kribs, A. Pasieka, M. Laforest, C. Ryan, and M. P. da Silva, “Research problems on numerical ranges in quantum computing,” Linear and Multilinear Algebra, vol. 57, no. 5, pp. 491–502, 2009, [Online]. Available at: https://www.tandfonline.com/doi/abs/10.1080/03081080802677441.
@article{kribs2009research,
title = {Research problems on numerical ranges in quantum computing},
author = {Kribs, D. W. and Pasieka, A. and Laforest, M. and Ryan, C. and da Silva, M. P.},
journal = {Linear and Multilinear Algebra},
volume = {57},
number = {5},
pages = {491--502},
year = {2009},
publisher = {Taylor & Francis},
url = {https://www.tandfonline.com/doi/abs/10.1080/03081080802677441}
}
- [124]T. Schulte-Herbruggen, G. Dirr, U. Helmke, and S. J. Glaser, “The significance of the C-numerical range and the local C-numerical range in quantum control and quantum information,” Linear and Multilinear Algebra, vol. 56, no. 1-2, pp. 3–26, 2008, [Online]. Available at: https://www.tandfonline.com/doi/abs/10.1080/03081080701544114.
@article{schulte2008significance,
title = {The significance of the C-numerical range and the local C-numerical range in quantum control and quantum information},
author = {Schulte-Herbruggen, T. and Dirr, G. and Helmke, U. and Glaser, S. J.},
journal = {Linear and Multilinear Algebra},
volume = {56},
number = {1-2},
pages = {3--26},
year = {2008},
publisher = {Taylor & Francis},
url = {https://www.tandfonline.com/doi/abs/10.1080/03081080701544114}
}
- [125]P. Gawron, Z. Puchała, J. A. Miszczak, Ł. Skowronek, and K. Życzkowski, “Restricted numerical range: a versatile tool in the theory of quantum information,” Journal of mathematical physics, vol. 51, no. 10, p. 102204, 2010, [Online]. Available at: https://aip.scitation.org/doi/abs/10.1063/1.3496901.
@article{gawron2010restricted,
title = {Restricted numerical range: a versatile tool in the theory of quantum information},
author = {Gawron, Piotr and Puchała, Zbigniew and Miszczak, Jarosław Adam and Skowronek, Łukasz and Życzkowski, Karol},
journal = {Journal of mathematical physics},
volume = {51},
number = {10},
pages = {102204},
year = {2010},
publisher = {American Institute of Physics},
url = {https://aip.scitation.org/doi/abs/10.1063/1.3496901}
}
- [126]K. Życzkowski et al., “Generalized numerical range as a versatile tool to study quantum entanglement,” Oberwolfach Report, vol. 59, no. 1-2, pp. 34–37, 2009, [Online]. Available at: https://chaos.if.uj.edu.pl/ karol/pdf2/zyczkowski2dec09.pdf.
@article{zyczkowski2009generalized,
title = {Generalized numerical range as a versatile tool to study quantum entanglement},
author = {Życzkowski, K. and Choi, M.-D. and Dunkl, C. and Holbrook, J. and Gawron, P. and Miszczak, J. A. and Puchala, Z. and Skowronek, Ł.},
journal = {Oberwolfach Report},
volume = {59},
number = {1-2},
pages = {34-37},
year = {2009},
url = {https://chaos.if.uj.edu.pl/~karol/pdf2/zyczkowski2dec09.pdf}
}
- [127]C. F. Dunkl, P. Gawron, J. A. Holbrook, J. A. Miszczak, Z. Puchała, and K. Życzkowski, “Numerical shadow and geometry of quantum states,” Journal of Physics A: Mathematical and Theoretical, vol. 44, p. 335301, 2011, [Online]. Available at: https://iopscience.iop.org/article/10.1088/1751-8113/44/33/335301/meta.
@article{dunkl2011numerical1,
title = {Numerical shadow and geometry of quantum states},
author = {Dunkl, C.F. and Gawron, P. and Holbrook, J.A. and Miszczak, J.A. and Puchała, Z. and Życzkowski, K.},
journal = {Journal of Physics A: Mathematical and Theoretical},
volume = {44},
pages = {335301},
year = {2011},
publisher = {IOP Publishing},
url = {https://iopscience.iop.org/article/10.1088/1751-8113/44/33/335301/meta}
}
- [128]C. F. Dunkl, P. Gawron, J. A. Holbrook, Z. Puchała, and K. Zyczkowski, “Numerical shadows: measures and densities on the numerical range,” Linear Algebra and its Applications, vol. 434, no. 9, pp. 2042–2080, 2011, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0024379510006397.
@article{dunkl2011numerical2,
title = {Numerical shadows: measures and densities on the numerical range},
author = {Dunkl, C.F. and Gawron, P. and Holbrook, J.A. and Puchała, Z. and Zyczkowski, K.},
journal = {Linear Algebra and its Applications},
volume = {434},
number = {9},
pages = {2042--2080},
year = {2011},
publisher = {North-Holland},
url = {https://www.sciencedirect.com/science/article/pii/S0024379510006397}
}
- [129]I. Bengtsson, S. Weis, and K. Życzkowski, “Geometry of the set of mixed quantum states: An apophatic approach,” in Geometric Methods in Physics, Springer, 2013, pp. 175–197.
@incollection{bengtsson2011geometry,
title = {Geometry of the set of mixed quantum states: An apophatic approach},
author = {Bengtsson, Ingemar and Weis, Stephan and Życzkowski, Karol},
booktitle = {Geometric Methods in Physics},
pages = {175--197},
year = {2013},
publisher = {Springer},
url = {https://link.springer.com/chapter/10.1007/978-3-0348-0448-6_15}
}
- [130]E. Gutkin and K. Życzkowski, “Joint numerical ranges, quantum maps, and joint numerical shadows,” Linear Algebra and its Applications, vol. 438, no. 5, pp. 2394–2404, 2013, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0024379512007732.
@article{gutkin2013joint,
title = {Joint numerical ranges, quantum maps, and joint numerical shadows},
author = {Gutkin, Eugene and Życzkowski, Karol},
journal = {Linear Algebra and its Applications},
volume = {438},
number = {5},
pages = {2394--2404},
year = {2013},
publisher = {Elsevier},
url = {https://www.sciencedirect.com/science/article/pii/S0024379512007732}
}
- [131]T. Gallay and D. Serre, “Numerical measure of a complex matrix,” Communications on Pure and Applied Mathematics, vol. 65, no. 3, pp. 287–336, 2012, [Online]. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.20374.
@article{gallay2010the,
title = {Numerical measure of a complex matrix},
author = {Gallay, Thierry and Serre, Denis},
journal = {Communications on Pure and Applied Mathematics},
volume = {65},
number = {3},
pages = {287--336},
year = {2012},
publisher = {Wiley Online Library},
url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.20374}
}
- [132]Z. Puchała, J. A. Miszczak, P. Gawron, C. F. Dunkl, J. A. Holbrook, and K. Życzkowski, “Restricted numerical shadow and geometry of quantum entanglement,” Journal of Physics A: Mathematical and Theoretical, vol. 45, no. 41, p. 415309, 2012, [Online]. Available at: https://d1wqtxts1xzle7.cloudfront.net/40538136/Restricted_numerical_shadow_and_geometry20151201-28343-1tqkl28.pdf?1448978875=&response-content-disposition=inline%3B+filename%3DRestricted_numerical_shadow_and_the_geom.pdf&Expires=1592565216&Signature=Hejde5pW2ID8kfVbbr4wAHu9SsM221OAQUiQ21j6SW-rMFjUCgWyXtlxji-gowYWowFcbjFHF4XMCc3ieuGOozuW9PiuPtPvd W7pK6tfWiTywFcNEbu3XfuC5fbYdb6A zL5kIlS6yKX5E4Bldoe-V424Mbk6JehrCaJ7-HEL8kYH21aZt DAI7RX4BEF cRtjTVYf8I0PcJAZMIn iCum0D0sI1MsMCYpnUHHe0J-WpGnDGo509mszZlIZYfAzoQfdVPpCRVhc6WUvkGnI5Eeyl6 NjJ4mEjvCAOXETEcNtl1ktGKRtMK 5pDe96SsPTTg3JQBg8YtgqvZlQJKlQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA.
@article{puchala2012restricted,
title = {Restricted numerical shadow and geometry of quantum entanglement},
author = {Puchała, Z. and Miszczak, J.A. and Gawron, P. and Dunkl, C.F. and Holbrook, J.A. and Życzkowski, K.},
journal = {Journal of Physics A: Mathematical and Theoretical},
volume = {45},
number = {41},
pages = {415309},
year = {2012},
url = {https://d1wqtxts1xzle7.cloudfront.net/40538136/Restricted_numerical_shadow_and_geometry20151201-28343-1tqkl28.pdf?1448978875=&response-content-disposition=inline%3B+filename%3DRestricted_numerical_shadow_and_the_geom.pdf&Expires=1592565216&Signature=Hejde5pW2ID8kfVbbr4wAHu9SsM221OAQUiQ21j6SW-rMFjUCgWyXtlxji-gowYWowFcbjFHF4XMCc3ieuGOozuW9PiuPtPvd~W7pK6tfWiTywFcNEbu3XfuC5fbYdb6A~zL5kIlS6yKX5E4Bldoe-V424Mbk6JehrCaJ7-HEL8kYH21aZt~DAI7RX4BEF~cRtjTVYf8I0PcJAZMIn~iCum0D0sI1MsMCYpnUHHe0J-WpGnDGo509mszZlIZYfAzoQfdVPpCRVhc6WUvkGnI5Eeyl6~NjJ4mEjvCAOXETEcNtl1ktGKRtMK~5pDe96SsPTTg3JQBg8YtgqvZlQJKlQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA}
}
- [133]C. F. Dunkl, P. Gawron, Ł. Pawela, Z. Puchała, and K. Życzkowski, “Real numerical shadow and generalized B-splines,” Linear Algebra and its Applications, vol. 479, pp. 12–51, 2015, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0024379515002050.
@article{dunkl2014real,
title = {Real numerical shadow and generalized B-splines},
author = {Dunkl, Charles F and Gawron, Piotr and Pawela, Łukasz and Puchała, Zbigniew and Życzkowski, Karol},
journal = {Linear Algebra and its Applications},
volume = {479},
pages = {12--51},
year = {2015},
publisher = {Elsevier},
url = {https://www.sciencedirect.com/science/article/pii/S0024379515002050}
}
- [134]D. C. Brody, D. W. Hook, and L. P. Hughston, “On quantum microcanonical equilibrium,” Journal of Physics: Conference Series, vol. 67, no. 1, p. 012025, 2007, [Online]. Available at: https://iopscience.iop.org/article/10.1088/1742-6596/67/1/012025/meta.
@article{brody2007on,
title = {On quantum microcanonical equilibrium},
author = {Brody, Dorje C and Hook, Daniel W and Hughston, Lane P},
journal = {Journal of Physics: Conference Series},
volume = {67},
number = {1},
pages = {012025},
year = {2007},
organization = {IOP Publishing},
url = {https://iopscience.iop.org/article/10.1088/1742-6596/67/1/012025/meta}
}
- [135]D. C. Brody, D. W. Hook, and L. P. Hughston, “Quantum phase transitions without thermodynamic limits,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 463, no. 2084, pp. 2021–2030, 2007, [Online]. Available at: https://royalsocietypublishing.org/doi/full/10.1098/rspa.2007.1865.
@article{brody2007quantum,
title = {Quantum phase transitions without thermodynamic limits},
author = {Brody, Dorje C and Hook, Daniel W and Hughston, Lane P},
journal = {Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences},
volume = {463},
number = {2084},
pages = {2021--2030},
year = {2007},
publisher = {The Royal Society London},
url = {https://royalsocietypublishing.org/doi/full/10.1098/rspa.2007.1865}
}
- [136]D. C. Brody, D. W. Hook, and L. P. Hughston, “Microcanonical distributions for quantum systems,” arxiv, vol. 1, pp. 1–8, 2005, [Online]. Available at: https://arxiv.org/abs/quant-ph/0506163.
@article{brody2005microcanonical,
title = {Microcanonical distributions for quantum systems},
author = {Brody, D. C. and Hook, D. W. and Hughston, L. P.},
journal = {arxiv},
volume = {1},
pages = {1-8},
year = {2005},
url = {https://arxiv.org/abs/quant-ph/0506163}
}
- [137]D. C. Brody and L. P. Hughston, “The quantum canonical ensemble,” Journal of Mathematical Physics, vol. 39, no. 12, pp. 6502–6508, 1998, [Online]. Available at: https://aip.scitation.org/doi/abs/10.1063/1.532661.
@article{brody1998the,
title = {The quantum canonical ensemble},
author = {Brody, Dorje C and Hughston, Lane P},
journal = {Journal of Mathematical Physics},
volume = {39},
number = {12},
pages = {6502--6508},
year = {1998},
publisher = {American Institute of Physics},
url = {https://aip.scitation.org/doi/abs/10.1063/1.532661}
}
- [138]L. C. Venuti and P. Zanardi, “Probability density of quantum expectation values,” Physics Letters A, vol. 377, no. 31-33, pp. 1854–1861, 2013, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S037596011300529X.
@article{zanardi2012probability,
title = {Probability density of quantum expectation values},
author = {Venuti, L Campos and Zanardi, Paolo},
journal = {Physics Letters A},
volume = {377},
number = {31-33},
pages = {1854--1861},
year = {2013},
publisher = {Elsevier},
url = {https://www.sciencedirect.com/science/article/pii/S037596011300529X}
}