Link Search Menu Expand Document

Literature

  1. [1]B. Lins, I. M. Spitkovsky, and S. Zhong, “The normalized numerical range and the Davis–Wielandt shell,” Linear Algebra and its Applications, vol. 546, pp. 187–209, 2018, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0024379518300417.
    @article{lins2018normalized,
      title = {The normalized numerical range and the Davis--Wielandt shell},
      author = {Lins, Brian and Spitkovsky, Ilya M and Zhong, Siyu},
      journal = {Linear Algebra and its Applications},
      volume = {546},
      pages = {187--209},
      year = {2018},
      publisher = {Elsevier},
      url = {https://www.sciencedirect.com/science/article/pii/S0024379518300417}
    }
    
  2. [2]L. Z. Gevorgyan, “Normalized numerical ranges of some operators,” Operators and Matrices, vol. 3, no. 1, pp. 145–153, 2009, [Online]. Available at: https://nyuscholars.nyu.edu/en/publications/on-the-normalized-numerical-range.
    @article{gevorgyan2009normalized,
      title = {Normalized numerical ranges of some operators},
      author = {Gevorgyan, LZ},
      journal = {Operators and Matrices},
      volume = {3},
      number = {1},
      pages = {145--153},
      year = {2009},
      url = {https://nyuscholars.nyu.edu/en/publications/on-the-normalized-numerical-range}
    }
    
  3. [3]W. Auzinger, “Sectorial operators and normalized numerical range,” Applied numerical mathematics, vol. 45, no. 4, pp. 367–388, 2003, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0168927402002544.
    @article{auzinger2003sectorial,
      title = {Sectorial operators and normalized numerical range},
      author = {Auzinger, Winfried},
      journal = {Applied numerical mathematics},
      volume = {45},
      number = {4},
      pages = {367--388},
      year = {2003},
      publisher = {Elsevier},
      url = {https://www.sciencedirect.com/science/article/pii/S0168927402002544}
    }
    
  4. [4]K. A. Camenga, P. X. Rault, D. J. Rossi, T. Sendova, and I. M. Spitkovsky, “Numerical range of some doubly stochastic matrices,” Applied Mathematics and Computation, vol. 221, pp. 40–47, 2013, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0096300313006231.
    @article{camenga2013numerical,
      title = {Numerical range of some doubly stochastic matrices},
      author = {Camenga, Kristin A and Rault, Patrick X and Rossi, Daniel J and Sendova, Tsvetanka and Spitkovsky, Ilya M},
      journal = {Applied Mathematics and Computation},
      volume = {221},
      pages = {40--47},
      year = {2013},
      publisher = {Elsevier},
      url = {https://www.sciencedirect.com/science/article/pii/S0096300313006231}
    }
    
  5. [5]T. Leake, B. Lins, and I. M. Spitkovsky, “Corrections and additions to ‘Inverse continuity on the boundary of the numerical range,’” Linear and Multilinear Algebra, vol. 64, no. 1, pp. 100–104, 2016, [Online]. Available at: https://doi.org/10.1080/03081087.2015.1044247.
    @article{leake2016corrections,
      title = {Corrections and additions to ‘Inverse continuity on the boundary of the numerical range’},
      author = {Leake, Timothy and Lins, Brian and Spitkovsky, Ilya M},
      journal = {Linear and Multilinear Algebra},
      volume = {64},
      number = {1},
      pages = {100--104},
      year = {2016},
      publisher = {Taylor \& Francis},
      url = {https://doi.org/10.1080/03081087.2015.1044247}
    }
    
  6. [6]T. Leake, B. Lins, and I. M. Spitkovsky, “Inverse continuity on the boundary of the numerical range,” Linear and Multilinear Algebra, vol. 62, no. 10, pp. 1335–1345, 2014, [Online]. Available at: https://doi.org/10.1080/03081087.2013.825911.
    @article{leake2014inverse,
      title = {Inverse continuity on the boundary of the numerical range},
      author = {Leake, Timothy and Lins, Brian and Spitkovsky, Ilya M},
      journal = {Linear and Multilinear Algebra},
      volume = {62},
      number = {10},
      pages = {1335--1345},
      year = {2014},
      publisher = {Taylor \& Francis},
      url = {https://doi.org/10.1080/03081087.2013.825911}
    }
    
  7. [7]K. A. Camenga, P. X. Rault, D. J. Rossi, T. Sendova, and I. M. Spitkovsky, “Numerical range of some doubly stochastic matrices,” Applied Mathematics and Computation, vol. 221, pp. 40–47, 2013, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0096300313006231.
    @article{camenga2013numericam,
      title = {Numerical range of some doubly stochastic matrices},
      author = {Camenga, Kristin A and Rault, Patrick X and Rossi, Daniel J and Sendova, Tsvetanka and Spitkovsky, Ilya M},
      journal = {Applied Mathematics and Computation},
      volume = {221},
      pages = {40--47},
      year = {2013},
      publisher = {Elsevier},
      url = {https://www.sciencedirect.com/science/article/pii/S0096300313006231}
    }
    
  8. [8]R. T. Chien and I. M. Spitkovsky, “On the numerical ranges of some tridiagonal matrices,” Linear Algebra and its Applications, vol. 470, pp. 228–240, 2015, [Online]. Available at: https://doi.org/10.1016/j.laa.2014.08.010.
    @article{chien2015numerical,
      title = {On the numerical ranges of some tridiagonal matrices},
      author = {Chien, Ruey Ting and Spitkovsky, Ilya M},
      journal = {Linear Algebra and its Applications},
      volume = {470},
      pages = {228--240},
      year = {2015},
      publisher = {Elsevier},
      url = {https://doi.org/10.1016/j.laa.2014.08.010}
    }
    
  9. [9]I. Spitkovsky and C. Thomas, “Line segments on the boundary of the numerical ranges of some tridiagonal matrices,” The Electronic Journal of Linear Algebra, vol. 30, pp. 693–703, 2015, [Online]. Available at: https://doi.org/10.13001/1081-3810.3012.
    @article{spitkovsky2015line,
      title = {Line segments on the boundary of the numerical ranges of some tridiagonal matrices},
      author = {Spitkovsky, Ilya and Thomas, Claire},
      journal = {The Electronic Journal of Linear Algebra},
      volume = {30},
      pages = {693--703},
      year = {2015},
      url = {https://doi.org/10.13001/1081-3810.3012}
    }
    
  10. [10]L. Rodman and I. M. Spitkovsky, “On numerical ranges of rank-two operators,” Integral Equations and Operator Theory, vol. 77, no. 3, pp. 441–448, 2013, [Online]. Available at: https://link.springer.com/article/10.1007/s00020-013-2092-y.
    @article{rodman2013numerical,
      title = {On numerical ranges of rank-two operators},
      author = {Rodman, Leiba and Spitkovsky, Ilya M},
      journal = {Integral Equations and Operator Theory},
      volume = {77},
      number = {3},
      pages = {441--448},
      year = {2013},
      publisher = {Springer},
      url = {https://link.springer.com/article/10.1007/s00020-013-2092-y}
    }
    
  11. [11]K. A. Camenga, P. X. Rault, T. Sendova, and I. M. Spitkovsky, “On the Gau–Wu number for some classes of matrices,” Linear Algebra and its Applications, vol. 444, pp. 254–262, 2014, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0024379513007830.
    @article{camenga2014gau,
      title = {On the Gau--Wu number for some classes of matrices},
      author = {Camenga, Kristin A and Rault, Patrick X and Sendova, Tsvetanka and Spitkovsky, Ilya M},
      journal = {Linear Algebra and its Applications},
      volume = {444},
      pages = {254--262},
      year = {2014},
      publisher = {Elsevier},
      url = {https://www.sciencedirect.com/science/article/pii/S0024379513007830}
    }
    
  12. [12]R. Birbonshi, I. M. Spitkovsky, and P. D. Srivastava, “A note on Anderson’s theorem in the infinite-dimensional setting,” Journal of Mathematical Analysis and Applications, vol. 461, no. 1, pp. 349–353, 2018, [Online]. Available at: https://doi.org/10.1016/j.jmaa.2018.01.002.
    @article{birbonshi2018note,
      title = {A note on Anderson's theorem in the infinite-dimensional setting},
      author = {Birbonshi, Riddhick and Spitkovsky, Ilya M and Srivastava, PD},
      journal = {Journal of Mathematical Analysis and Applications},
      volume = {461},
      number = {1},
      pages = {349--353},
      year = {2018},
      publisher = {Elsevier},
      url = {https://doi.org/10.1016/j.jmaa.2018.01.002}
    }
    
  13. [13]P. Rault, T. Sendova, and I. Spitkovsky, “3-by-3 matrices with elliptical numerical range revisited,” The Electronic Journal of Linear Algebra, vol. 26, 2013, [Online]. Available at: https://www.researchgate.net/publication/267480998_3-by-3_matrices_with_elliptical_numerical_range_revisited.
    @article{rault20133,
      title = {3-by-3 matrices with elliptical numerical range revisited},
      author = {Rault, Patrick and Sendova, Tsvetanka and Spitkovsky, Ilya},
      journal = {The Electronic Journal of Linear Algebra},
      volume = {26},
      year = {2013},
      url = {https://www.researchgate.net/publication/267480998_3-by-3_matrices_with_elliptical_numerical_range_revisited}
    }
    
  14. [14]B. Lins and I. Spitkovsky, “Inverse continuity of the numerical range map for Hilbert space operators,” arXiv preprint arXiv:1810.04199, vol. 0, 2018, [Online]. Available at: https://arxiv.org/abs/1810.04199.
    @article{lins2018inverse,
      title = {Inverse continuity of the numerical range map for Hilbert space operators},
      author = {Lins, Brian and Spitkovsky, Ilya},
      journal = {arXiv preprint arXiv:1810.04199},
      volume = {0},
      year = {2018},
      url = {https://arxiv.org/abs/1810.04199}
    }
    
  15. [15]H.-L. Gau, P. Y. Wu, and others, “Numerical ranges and compressions of Sn-matrices,” Operators and Matrices, vol. 7, no. 2, pp. 465–476, 2013, [Online]. Available at: https://www.researchgate.net/profile/Pei_Wu2/publication/268664189_Numerical_ranges_and_compressions_of_S_n_-matrices/links/547e5a590cf2d2200ede9933/Numerical-ranges-and-compressions-of-S-n-matrices.pdf.
    @article{gau2013numerical,
      title = {Numerical ranges and compressions of Sn-matrices},
      author = {Gau, Hwa-Long and Wu, Pei Yuan and others},
      journal = {Operators and Matrices},
      volume = {7},
      number = {2},
      pages = {465--476},
      year = {2013},
      url = {https://www.researchgate.net/profile/Pei_Wu2/publication/268664189_Numerical_ranges_and_compressions_of_S_n_-matrices/links/547e5a590cf2d2200ede9933/Numerical-ranges-and-compressions-of-S-n-matrices.pdf}
    }
    
  16. [16]M. Adam, A. Aretaki, and I. M. Spitkovsky, “Elliptical higher rank numerical range of some Toeplitz matrices,” Linear Algebra and its Applications, vol. 549, pp. 256–275, 2018, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0024379518301344.
    @article{adam2018elliptical,
      title = {Elliptical higher rank numerical range of some Toeplitz matrices},
      author = {Adam, Maria and Aretaki, Aikaterini and Spitkovsky, Ilya M},
      journal = {Linear Algebra and its Applications},
      volume = {549},
      pages = {256--275},
      year = {2018},
      publisher = {Elsevier},
      url = {https://www.sciencedirect.com/science/article/pii/S0024379518301344}
    }
    
  17. [17]K. A. Camenga, L. Deaett, P. X. Rault, T. Sendova, I. M. Spitkovsky, and R. B. J. Yates, “Singularities of base polynomials and Gau–Wu numbers,” Linear Algebra and its Applications, vol. 581, pp. 112–127, 2019, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0024379519302861.
    @article{camenga2019singularities,
      title = {Singularities of base polynomials and Gau--Wu numbers},
      author = {Camenga, Kristin A and Deaett, Louis and Rault, Patrick X and Sendova, Tsvetanka and Spitkovsky, Ilya M and Yates, Rebekah B Johnson},
      journal = {Linear Algebra and its Applications},
      volume = {581},
      pages = {112--127},
      year = {2019},
      publisher = {Elsevier},
      url = {https://www.sciencedirect.com/science/article/pii/S0024379519302861}
    }
    
  18. [18]A. Hamed and I. Spitkovsky, “On the maximal numerical range of some matrices,” The Electronic Journal of Linear Algebra, vol. 34, pp. 288–303, 2018, [Online]. Available at: https://doi.org/10.13001/1081-3810.3774.
    @article{hamed2018maximal,
      title = {On the maximal numerical range of some matrices},
      author = {Hamed, Ali and Spitkovsky, Ilya},
      journal = {The Electronic Journal of Linear Algebra},
      volume = {34},
      pages = {288--303},
      year = {2018},
      url = {https://doi.org/10.13001/1081-3810.3774}
    }
    
  19. [19]T. Geryba and I. M. Spitkovsky, “On some 4-by-4 matrices with bi-elliptical numerical ranges,” arXiv e-prints, vol. 0, 2020, [Online]. Available at: https://arxiv.org/abs/2009.00272.
    @article{arXiv200900272G,
      title = {On some 4-by-4 matrices with bi-elliptical numerical ranges},
      author = {{Geryba}, Titas and {Spitkovsky}, Ilya M.},
      journal = {arXiv e-prints},
      year = {2020},
      volume = {0},
      url = {https://arxiv.org/abs/2009.00272}
    }
    
  20. [20]J. Xie et al., “Observing geometry of quantum states in a three-level system,” arXiv preprint arXiv:1909.05463, vol. 0, 2019, [Online]. Available at: https://arxiv.org/abs/1909.05463.
    @article{xie2019observing,
      title = {Observing geometry of quantum states in a three-level system},
      author = {Xie, Jie and Zhang, Aonan and Cao, Ningping and Xu, Huichao and Zheng, Kaimin and Poon, Yiu-Tung and Sze, Nung-Sing and Xu, Ping and Zeng, Bei and Zhang, Lijian},
      journal = {arXiv preprint arXiv:1909.05463},
      volume = {0},
      year = {2019},
      url = {https://arxiv.org/abs/1909.05463}
    }
    
  21. [21]N. Cao, D. W. Kribs, C.-K. Li, M. I. Nelson, Y.-T. Poon, and B. Zeng, Higher rank matricial ranges and hybrid quantum error correction. Taylor & Francis, 2020, pp. 1–13.
    @book{cao2020higher,
      title = {Higher rank matricial ranges and hybrid quantum error correction},
      author = {Cao, Ningping and Kribs, David W and Li, Chi-Kwong and Nelson, Mike I and Poon, Yiu-Tung and Zeng, Bei},
      journal = {Linear and Multilinear Algebra},
      pages = {1--13},
      year = {2020},
      publisher = {Taylor \& Francis},
      url = {https://www.tandfonline.com/doi/abs/10.1080/03081087.2020.1748852}
    }
    
  22. [22]H.-L. Gau and P. Y. Wu, “Numerical ranges of companion matrices,” Linear algebra and its applications, vol. 421, no. 2-3, pp. 202–218, 2007, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0024379506001893.
    @article{gau2007numerical,
      title = {Numerical ranges of companion matrices},
      author = {Gau, Hwa-Long and Wu, Pei Yuan},
      journal = {Linear algebra and its applications},
      volume = {421},
      number = {2-3},
      pages = {202--218},
      year = {2007},
      publisher = {Elsevier},
      url = {https://www.sciencedirect.com/science/article/pii/S0024379506001893}
    }
    
  23. [23]B. Lins, “Numerical ranges encircled by analytic curves,” arXiv preprint arXiv:2003.05347, vol. 0, 2020, [Online]. Available at: https://arxiv.org/abs/2003.05347.
    @article{lins2020numerical,
      title = {Numerical ranges encircled by analytic curves},
      author = {Lins, Brian},
      journal = {arXiv preprint arXiv:2003.05347},
      volume = {0},
      year = {2020},
      url = {https://arxiv.org/abs/2003.05347}
    }
    
  24. [24]S. Bogli and M. Marletta, “Essential numerical ranges for linear operator pencils,” arXiv preprint arXiv:1909.01301, vol. 0, 2019, [Online]. Available at: https://arxiv.org/abs/1909.01301.
    @article{bogli2019essential,
      title = {Essential numerical ranges for linear operator pencils},
      author = {Bogli, Sabine and Marletta, Marco},
      journal = {arXiv preprint arXiv:1909.01301},
      volume = {0},
      year = {2019},
      url = {https://arxiv.org/abs/1909.01301}
    }
    
  25. [25]C.-K. Li, Y.-T. Poon, and Y.-S. Wang, “Joint numerical ranges and communtativity of matrices,” arXiv preprint arXiv:2002.02768, vol. 0, 2020, [Online]. Available at: https://arxiv.org/abs/2002.02768.
    @article{li2020joint,
      title = {Joint numerical ranges and communtativity of matrices},
      author = {Li, Chi-Kwong and Poon, Yiu-Tung and Wang, Ya-Shu},
      journal = {arXiv preprint arXiv:2002.02768},
      year = {2020},
      volume = {0},
      url = {https://arxiv.org/abs/2002.02768}
    }
    
  26. [26]D. Plaumann, R. Sinn, and S. Weis, “Kippenhahn’s Theorem for joint numerical ranges and quantum states,” arXiv preprint arXiv:1907.04768, vol. 0, 2019, [Online]. Available at: https://arxiv.org/abs/1907.04768.
    @article{plaumann2019kippenhahn,
      title = {Kippenhahn's Theorem for joint numerical ranges and quantum states},
      author = {Plaumann, Daniel and Sinn, Rainer and Weis, Stephan},
      journal = {arXiv preprint arXiv:1907.04768},
      year = {2019},
      volume = {0},
      url = {https://arxiv.org/abs/1907.04768}
    }
    
  27. [27]K. Bickel and P. Gorkin, “Numerical Range and Compressions of the Shift,” arXiv preprint arXiv:1810.11680, vol. 0, 2018, [Online]. Available at: https://arxiv.org/abs/1810.11680.
    @article{bickel2018numerical,
      title = {Numerical Range and Compressions of the Shift},
      author = {Bickel, Kelly and Gorkin, Pamela},
      journal = {arXiv preprint arXiv:1810.11680},
      year = {2018},
      volume = {0},
      url = {https://arxiv.org/abs/1810.11680}
    }
    
  28. [28]J. Kim and Y. Kim, “Jordan Plane and Numerical Range of Operators Involving Two Projections,” arXiv preprint arXiv:1811.10518, vol. 0, 2018, [Online]. Available at: https://arxiv.org/abs/1811.10518.
    @article{kim2018jordan,
      title = {Jordan Plane and Numerical Range of Operators Involving Two Projections},
      author = {Kim, Jaedeok and Kim, Youngmi},
      journal = {arXiv preprint arXiv:1811.10518},
      year = {2018},
      volume = {0},
      url = {https://arxiv.org/abs/1811.10518}
    }
    
  29. [29]M. Fatehi and A. Negahdari, “Numerical range of weighted composition operators which contain zero,” arXiv preprint arXiv:1901.07736, vol. 0, 2019, [Online]. Available at: https://arxiv.org/abs/1901.07736.
    @article{fatehi2019numerical,
      title = {Numerical range of weighted composition operators which contain zero},
      author = {Fatehi, Mahsa and Negahdari, Asma},
      journal = {arXiv preprint arXiv:1901.07736},
      year = {2019},
      volume = {0},
      url = {https://arxiv.org/abs/1901.07736}
    }
    
  30. [30]C.-K. Li and Y.-T. Poon, “Numerical Range Inclusion, Dilation, and Operator Systems,” arXiv preprint arXiv:1911.01221, vol. 0, 2019, [Online]. Available at: https://arxiv.org/abs/1911.01221.
    @article{li2019numerical,
      title = {Numerical Range Inclusion, Dilation, and Operator Systems},
      author = {Li, Chi-Kwong and Poon, Yiu-Tung},
      journal = {arXiv preprint arXiv:1911.01221},
      year = {2019},
      volume = {0},
      url = {https://arxiv.org/abs/1911.01221}
    }
    
  31. [31]T. Geryba and I. M. Spitkovsky, “On the numerical range of some block matrices with scalar diagonal blocks,” Linear and Multilinear Algebra, vol. 0, pp. 1–14, 2020, [Online]. Available at: https://www.tandfonline.com/doi/abs/10.1080/03081087.2020.1749225?journalCode=glma20.
    @article{geryba2020numerical,
      title = {On the numerical range of some block matrices with scalar diagonal blocks},
      author = {Geryba, Titas and Spitkovsky, Ilya M},
      journal = {Linear and Multilinear Algebra},
      pages = {1--14},
      year = {2020},
      volume = {0},
      publisher = {Taylor and Francis},
      url = {https://www.tandfonline.com/doi/abs/10.1080/03081087.2020.1749225?journalCode=glma20}
    }
    
  32. [32]Y. Zhang and X. Fang, “c-numerical range of operator products on B (H),” arXiv preprint arXiv:1901.05245, vol. 0, 2019, [Online]. Available at: https://arxiv.org/abs/1901.05245.
    @article{zhang2019c,
      title = {c-numerical range of operator products on B (H)},
      author = {Zhang, Yanfang and Fang, Xiaochun},
      journal = {arXiv preprint arXiv:1901.05245},
      year = {2019},
      volume = {0},
      url = {https://arxiv.org/abs/1901.05245}
    }
    
  33. [33]P. A. Fillmore, J. G. Stampfli, and J. P. Williams, “On the essential numerical range, the essential spectrum, and a problem of Halmos,” Acta Sci. Math.(Szeged), vol. 33, no. 197, pp. 179–192, 1972, [Online]. Available at: http://acta.bibl.u-szeged.hu/14354/1/math_033_fasc_003_004_179-192.pdf.
    @article{fillmore1972essential,
      title = {On the essential numerical range, the essential spectrum, and a problem of Halmos},
      author = {Fillmore, PA and Stampfli, JG and Williams, James P},
      journal = {Acta Sci. Math.(Szeged)},
      volume = {33},
      number = {197},
      pages = {179--192},
      year = {1972},
      url = {http://acta.bibl.u-szeged.hu/14354/1/math_033_fasc_003_004_179-192.pdf}
    }
    
  34. [34]J. G. Stampfli and J. P. Williams, “Growth conditions and the numerical range in a Banach algebra,” Tohoku Mathematical Journal, Second Series, vol. 20, no. 4, pp. 417–424, 1968, [Online]. Available at: https://www.jstage.jst.go.jp/article/tmj1949/20/4/20_4_417/_article/-char/ja/.
    @article{stampfli1968growth,
      title = {Growth conditions and the numerical range in a Banach algebra},
      author = {Stampfli, JG and Williams, JP},
      journal = {Tohoku Mathematical Journal, Second Series},
      volume = {20},
      number = {4},
      pages = {417--424},
      year = {1968},
      publisher = {Mathematical Institute, Tohoku University},
      url = {https://www.jstage.jst.go.jp/article/tmj1949/20/4/20_4_417/_article/-char/ja/}
    }
    
  35. [35]S. Bogli, M. Marletta, and C. Tretter, “The essential numerical range for unbounded linear operators,” Journal of Functional Analysis, vol. 0, p. 108509, 2020, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0022123620300525.
    @article{bogli2020essential,
      title = {The essential numerical range for unbounded linear operators},
      author = {Bogli, Sabine and Marletta, Marco and Tretter, Christiane},
      journal = {Journal of Functional Analysis},
      pages = {108509},
      year = {2020},
      volume = {0},
      publisher = {Elsevier},
      url = {https://www.sciencedirect.com/science/article/pii/S0022123620300525}
    }
    
  36. [36]L. Carvalho, C. Diogo, and S. Mendes, “The star-center of the quaternionic numerical range,” Linear Algebra and its Applications, vol. 0, 2020, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0024379520302706.
    @article{carvalho2019star,
      title = {The star-center of the quaternionic numerical range},
      author = {Carvalho, Luís and Diogo, Cristina and Mendes, Sérgio},
      journal = {Linear Algebra and its Applications},
      year = {2020},
      volume = {0},
      publisher = {Elsevier},
      url = {https://www.sciencedirect.com/science/article/pii/S0024379520302706}
    }
    
  37. [37]P.-S. Lau, C.-K. Li, Y.-T. Poon, and N.-S. Sze, “Convexity and star-shapedness of matricial range,” Journal of Functional Analysis, vol. 275, no. 9, pp. 2497–2515, 2018, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0022123618301277.
    @article{lau2018convexity,
      title = {Convexity and star-shapedness of matricial range},
      author = {Lau, Pan-Shun and Li, Chi-Kwong and Poon, Yiu-Tung and Sze, Nung-Sing},
      journal = {Journal of Functional Analysis},
      volume = {275},
      number = {9},
      pages = {2497--2515},
      year = {2018},
      publisher = {Elsevier},
      url = {https://www.sciencedirect.com/science/article/pii/S0022123618301277}
    }
    
  38. [38]P. S. Kumar, “A note on convexity of sections of quaternionic numerical range,” Linear Algebra and its Applications, vol. 572, pp. 92–116, 2019, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0024379519300990.
    @article{kumar2019note,
      title = {A note on convexity of sections of quaternionic numerical range},
      author = {Kumar, P Santhosh},
      journal = {Linear Algebra and its Applications},
      volume = {572},
      pages = {92--116},
      year = {2019},
      publisher = {Elsevier},
      url = {https://www.sciencedirect.com/science/article/pii/S0024379519300990}
    }
    
  39. [39]L. Carvalho, C. Diogo, and S. Mendes, “On the convexity and circularity of the numerical range of nilpotent quaternionic matrices,” arXiv preprint arXiv:1907.13438, vol. 0, 2019, [Online]. Available at: https://arxiv.org/abs/1907.13438.
    @article{carvalho2019convexity,
      title = {On the convexity and circularity of the numerical range of nilpotent quaternionic matrices},
      author = {Carvalho, Luis and Diogo, Cristina and Mendes, Sérgio},
      journal = {arXiv preprint arXiv:1907.13438},
      year = {2019},
      volume = {0},
      url = {https://arxiv.org/abs/1907.13438}
    }
    
  40. [40]M. Argerami and S. Mustafa, “Higher rank numerical ranges of Jordan-like matrices,” Linear and Multilinear Algebra, vol. 0, pp. 1–20, 2019, [Online]. Available at: https://www.tandfonline.com/doi/abs/10.1080/03081087.2019.1684873?journalCode=glma20.
    @article{argerami2019higher,
      title = {Higher rank numerical ranges of Jordan-like matrices},
      author = {Argerami, Martín and Mustafa, Saleh},
      journal = {Linear and Multilinear Algebra},
      pages = {1--20},
      volume = {0},
      year = {2019},
      publisher = {Taylor \& Francis},
      url = {https://www.tandfonline.com/doi/abs/10.1080/03081087.2019.1684873?journalCode=glma20}
    }
    
  41. [41]G. Dirr and F. vom Ende, “The C-Numerical Range for Schatten-Class Operators,” arXiv preprint arXiv:1808.06898, vol. 0, 2018, [Online]. Available at: https://arxiv.org/abs/1808.06898.
    @article{dirr2018c,
      title = {The C-Numerical Range for Schatten-Class Operators},
      author = {Dirr, Gunther and Ende, Frederik vom},
      journal = {arXiv preprint arXiv:1808.06898},
      year = {2018},
      volume = {0},
      url = {https://arxiv.org/abs/1808.06898}
    }
    
  42. [42]R. C. Thompson, Research problem the matrix numerical range. Taylor and Francis, 1987.
    @book{thompson1987research,
      title = {Research problem the matrix numerical range},
      author = {Thompson, Robert C},
      year = {1987},
      publisher = {Taylor and Francis},
      url = {https://www.tandfonline.com/doi/abs/10.1080/03081088708817807}
    }
    
  43. [43]C.-K. Li and N.-K. Tsing, “The numerical range of derivations,” Linear Algebra and its Applications, vol. 119, pp. 97–119, 1989, [Online]. Available at: https://core.ac.uk/download/pdf/82777226.pdf.
    @article{li1989numerical,
      title = {The numerical range of derivations},
      author = {Li, Chi-Kwong and Tsing, Nam-Kiu},
      journal = {Linear Algebra and its Applications},
      volume = {119},
      pages = {97--119},
      year = {1989},
      publisher = {North-Holland},
      url = {https://core.ac.uk/download/pdf/82777226.pdf}
    }
    
  44. [44]C.-K. Li, B.-S. Tam, and N.-K. Tsing, “Linear operators preserving the (p, q)-numerical range,” Linear Algebra and its Applications, vol. 110, pp. 75–89, 1988, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/0024379583901337.
    @article{li1988linear,
      title = {Linear operators preserving the (p, q)-numerical range},
      author = {Li, Chi-Kwong and Tam, Bit-Shun and Tsing, Nam-Kiu},
      journal = {Linear Algebra and its Applications},
      volume = {110},
      pages = {75--89},
      year = {1988},
      publisher = {Elsevier},
      url = {https://www.sciencedirect.com/science/article/pii/0024379583901337}
    }
    
  45. [45]W.-F. Chuan, “The unitary equivalence of compact operators,” Glasgow Mathematical Journal, vol. 26, no. 2, pp. 145–149, 1985, [Online]. Available at: https://www.cambridge.org/core/journals/glasgow-mathematical-journal/article/unitary-equivalence-of-compact-operators/799971338C614A5088FB71FE0691659A.
    @article{chuan1985unitary,
      title = {The unitary equivalence of compact operators},
      author = {Chuan, Wai-Fong},
      journal = {Glasgow Mathematical Journal},
      volume = {26},
      number = {2},
      pages = {145--149},
      year = {1985},
      publisher = {Cambridge University Press},
      url = {https://www.cambridge.org/core/journals/glasgow-mathematical-journal/article/unitary-equivalence-of-compact-operators/799971338C614A5088FB71FE0691659A}
    }
    
  46. [46]C.-K. Li and N.-K. Tsing, “On the k th matrix numerical range,” Linear and Multilinear Algebra, vol. 28, no. 4, pp. 229–239, 1991, [Online]. Available at: https://www.tandfonline.com/doi/abs/10.1080/03081089108818047.
    @article{li1991k,
      title = {On the k th matrix numerical range},
      author = {Li, Chi-Kwong and Tsing, Nam-Kiu},
      journal = {Linear and Multilinear Algebra},
      volume = {28},
      number = {4},
      pages = {229--239},
      year = {1991},
      publisher = {Taylor and Francis},
      url = {https://www.tandfonline.com/doi/abs/10.1080/03081089108818047}
    }
    
  47. [47]C.-K. Li, Y.-T. Poon, and N.-S. Sze, “Generalized interlacing inequalities,” Linear and Multilinear Algebra, vol. 60, no. 11-12, pp. 1245–1254, 2012, [Online]. Available at: https://www.tandfonline.com/doi/abs/10.1080/03081087.2011.619534?journalCode=glma20.
    @article{li2012generalized,
      title = {Generalized interlacing inequalities},
      author = {Li, Chi-Kwong and Poon, Yiu-Tung and Sze, Nung-Sing},
      journal = {Linear and Multilinear Algebra},
      volume = {60},
      number = {11-12},
      pages = {1245--1254},
      year = {2012},
      publisher = {Taylor and Francis},
      url = {https://www.tandfonline.com/doi/abs/10.1080/03081087.2011.619534?journalCode=glma20}
    }
    
  48. [48]M.-D. Choi, N. Johnston, and D. W. Kribs, “The multiplicative domain in quantum error correction,” Journal of Physics A: Mathematical and Theoretical, vol. 42, no. 24, p. 245303, 2009, [Online]. Available at: https://iopscience.iop.org/article/10.1088/1751-8113/42/24/245303/meta.
    @article{choi2009multiplicative,
      title = {The multiplicative domain in quantum error correction},
      author = {Choi, Man-Duen and Johnston, Nathaniel and Kribs, David W},
      journal = {Journal of Physics A: Mathematical and Theoretical},
      volume = {42},
      number = {24},
      pages = {245303},
      year = {2009},
      publisher = {IOP Publishing},
      url = {https://iopscience.iop.org/article/10.1088/1751-8113/42/24/245303/meta}
    }
    
  49. [49]N.-K. Tsin, “Diameter and minimal width of the numerical range,” Linear and multilinear algebra, vol. 14, no. 2, pp. 179–185, 1983, [Online]. Available at: https://www.tandfonline.com/doi/abs/10.1080/03081088308817554.
    @article{tsin1983diameter,
      title = {Diameter and minimal width of the numerical range},
      author = {Tsin, Nam-Kiu},
      journal = {Linear and multilinear algebra},
      volume = {14},
      number = {2},
      pages = {179--185},
      year = {1983},
      publisher = {Taylor and Francis},
      url = {https://www.tandfonline.com/doi/abs/10.1080/03081088308817554}
    }
    
  50. [50]D. Plaumann, R. Sinn, and S. Weis, “Kippenhahn’s Theorem for joint numerical ranges and quantum states,” arXiv preprint arXiv:1907.04768, vol. 0, 2019, [Online]. Available at: https://arxiv.org/abs/1907.04768.
    @article{plaumann2019kippenhaho,
      title = {Kippenhahn's Theorem for joint numerical ranges and quantum states},
      author = {Plaumann, Daniel and Sinn, Rainer and Weis, Stephan},
      journal = {arXiv preprint arXiv:1907.04768},
      year = {2019},
      volume = {0},
      url = {https://arxiv.org/abs/1907.04768}
    }
    
  51. [51]J.-C. Bourin and A. Mhanna, “Positive block matrices and numerical ranges,” Comptes Rendus Mathematique, vol. 355, no. 10, pp. 1077–1081, 2017, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S1631073X1730256X.
    @article{bourin2017positive,
      title = {Positive block matrices and numerical ranges},
      author = {Bourin, Jean-Christophe and Mhanna, Antoine},
      journal = {Comptes Rendus Mathematique},
      volume = {355},
      number = {10},
      pages = {1077--1081},
      year = {2017},
      publisher = {Elsevier},
      url = {https://www.sciencedirect.com/science/article/pii/S1631073X1730256X}
    }
    
  52. [52]M.-T. Chien, H. Nakazato, and J. Meng, “The diameter and width of numerical ranges,” Linear Algebra and its Applications, vol. 582, pp. 76–98, 2019, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0024379519303301.
    @article{chien2019diameter,
      title = {The diameter and width of numerical ranges},
      author = {Chien, Mao-Ting and Nakazato, Hiroshi and Meng, Jie},
      journal = {Linear Algebra and its Applications},
      volume = {582},
      pages = {76--98},
      year = {2019},
      publisher = {Elsevier},
      url = {https://www.sciencedirect.com/science/article/pii/S0024379519303301}
    }
    
  53. [53]M.-T. Chien, C.-K. Li, and H. Nakazato, “The diameter and width of higher rank numerical ranges,” Linear and Multilinear Algebra, vol. 0, pp. 1–17, 2020, [Online]. Available at: https://www.tandfonline.com/doi/abs/10.1080/03081087.2019.1710105.
    @article{chien2020diameter,
      title = {The diameter and width of higher rank numerical ranges},
      author = {Chien, Mao-Ting and Li, Chi-Kwong and Nakazato, Hiroshi},
      journal = {Linear and Multilinear Algebra},
      pages = {1--17},
      volume = {0},
      year = {2020},
      publisher = {Taylor and Francis},
      url = {https://www.tandfonline.com/doi/abs/10.1080/03081087.2019.1710105}
    }
    
  54. [54]J. Czartowski, K. Szymański, B. Gardas, Y. V. Fyodorov, and K. Życzkowski, “Separability gap and large-deviation entanglement criterion,” Physical Review A, vol. 100, no. 4, p. 042326, 2019, [Online]. Available at: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.100.042326.
    @article{czartowskiseparability,
      title = {Separability gap and large-deviation entanglement criterion},
      author = {Czartowski, Jakub and Szymański, Konrad and Gardas, Bartłomiej and Fyodorov, Yan V and Życzkowski, Karol},
      journal = {Physical Review A},
      volume = {100},
      number = {4},
      pages = {042326},
      year = {2019},
      publisher = {APS},
      url = {https://journals.aps.org/pra/abstract/10.1103/PhysRevA.100.042326}
    }
    
  55. [55]K. Ryszard, L. Paulina, and P. Łukasz, “Perturbation of the numerical range of unitary matrices,” arXiv preprint arXiv: 2002.05553v1, vol. 0, 2020, [Online]. Available at: https://arxiv.org/abs/2002.05553.
    @article{kukulski2020,
      title = {Perturbation of the numerical range of unitary matrices},
      author = {Ryszard, Kukulski and Paulina, Lewandowska and Łukasz, Pawela},
      journal = {arXiv preprint arXiv: 2002.05553v1},
      year = {2020},
      volume = {0},
      url = {https://arxiv.org/abs/2002.05553}
    }
    
  56. [56]K. J. Szymański and K. Życzkowski, “Geometric and algebraic origins of additive uncertainty relations,” Journal of Physics A: Mathematical and Theoretical, vol. 0, 2019, [Online]. Available at: https://iopscience.iop.org/article/10.1088/1751-8121/ab4543/meta.
    @article{szymanski2019geometric,
      title = {Geometric and algebraic origins of additive uncertainty relations},
      author = {Szymański, Konrad Jan and Życzkowski, Karol},
      journal = {Journal of Physics A: Mathematical and Theoretical},
      year = {2019},
      volume = {0},
      publisher = {IOP Publishing},
      url = {https://iopscience.iop.org/article/10.1088/1751-8121/ab4543/meta}
    }
    
  57. [57]R. Koide and H. Nakazato, “The q-numerical range of a certain 3\times 3 matrix,” International Mathematical Forum3, vol. 0, pp. 1001–1010, 2008, [Online]. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.672.1372&rep=rep1&type=pdf.
    @article{koide2008q,
      title = {The q-numerical range of a certain 3$\times$ 3 matrix},
      author = {Koide, Ryuusuke and Nakazato, Hiroshi},
      journal = {International Mathematical Forum3},
      pages = {1001--1010},
      year = {2008},
      volume = {0},
      publisher = {Citeseer},
      url = {http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.672.1372&rep=rep1&type=pdf}
    }
    
  58. [58]C.-K. Li, “q-Numerical ranges of normal and convex matrices,” Linear and Multilinear Algebra, vol. 43, no. 4, pp. 377–384, 1998, [Online]. Available at: https://www.tandfonline.com/doi/abs/10.1080/03081089808818538?journalCode=glma20.
    @article{li1998q,
      title = {q-Numerical ranges of normal and convex matrices},
      author = {Li, Chi-Kwong},
      journal = {Linear and Multilinear Algebra},
      volume = {43},
      number = {4},
      pages = {377--384},
      year = {1998},
      publisher = {Taylor \& Francis},
      url = {https://www.tandfonline.com/doi/abs/10.1080/03081089808818538?journalCode=glma20}
    }
    
  59. [59]I. M. Spitkovsky and S. Weis, “Signatures of quantum phase transitions from the boundary of the numerical range,” Journal of mathematical physics, vol. 59, no. 12, p. 121901, 2018, [Online]. Available at: https://aip.scitation.org/doi/abs/10.1063/1.5017904.
    @article{spitkovsky2018signatures,
      title = {Signatures of quantum phase transitions from the boundary of the numerical range},
      author = {Spitkovsky, Ilya M and Weis, Stephan},
      journal = {Journal of mathematical physics},
      volume = {59},
      number = {12},
      pages = {121901},
      year = {2018},
      publisher = {AIP Publishing},
      url = {https://aip.scitation.org/doi/abs/10.1063/1.5017904}
    }
    
  60. [60]J. Antezana, G. Larotonda, and A. Varela, “Optimal paths for symmetric actions in the unitary group,” Communications in Mathematical Physics, vol. 328, no. 2, pp. 481–497, 2014, [Online]. Available at: https://link.springer.com/article/10.1007/s00220-014-2041-x.
    @article{antezana2014optimal,
      title = {Optimal paths for symmetric actions in the unitary group},
      author = {Antezana, Jorge and Larotonda, Gabriel and Varela, Alejandro},
      journal = {Communications in Mathematical Physics},
      volume = {328},
      number = {2},
      pages = {481--497},
      year = {2014},
      publisher = {Springer},
      url = {https://link.springer.com/article/10.1007/s00220-014-2041-x}
    }
    
  61. [61]M. Zahraei, G. Aghamollaei, and others, “Higher rank numerical ranges of rectangular matrices,” Annals of Functional Analysis, vol. 6, no. 2, pp. 133–142, 2015, [Online]. Available at: https://projecteuclid.org/euclid.afa/1418997772.
    @article{zahraei2015higher,
      title = {Higher rank numerical ranges of rectangular matrices},
      author = {Zahraei, Mohsen and Aghamollaei, Gholamreza and others},
      journal = {Annals of Functional Analysis},
      volume = {6},
      number = {2},
      pages = {133--142},
      year = {2015},
      publisher = {Tusi Mathematical Research Group},
      url = {https://projecteuclid.org/euclid.afa/1418997772}
    }
    
  62. [62]I. M. Spitkovsky, “A note on the maximal numerical range,” arXiv preprint arXiv:1803.10516, vol. 0, 2018, [Online]. Available at: https://arxiv.org/abs/1803.10516.
    @article{spitkovsky2018note,
      title = {A note on the maximal numerical range},
      author = {Spitkovsky, Ilya M},
      journal = {arXiv preprint arXiv:1803.10516},
      year = {2018},
      volume = {0},
      url = {https://arxiv.org/abs/1803.10516}
    }
    
  63. [63]A. Aretaki and J. Maroulas, “Investigating the Numerical Range of Non Square Matrices,” arXiv preprint arXiv:0904.4325, vol. 0, 2009, [Online]. Available at: https://arxiv.org/abs/0904.4325.
    @article{aretaki2009investigating,
      title = {Investigating the Numerical Range of Non Square Matrices},
      author = {Aretaki, Aikaterini and Maroulas, John},
      journal = {arXiv preprint arXiv:0904.4325},
      year = {2009},
      volume = {0},
      url = {https://arxiv.org/abs/0904.4325}
    }
    
  64. [64]M. Marcus and M. Sandy, “Conditions for the generalized numerical range to be real,” Linear algebra and its applications, vol. 71, pp. 219–239, 1985, [Online]. Available at: https://core.ac.uk/download/pdf/82435859.pdf.
    @article{marcus1985conditions,
      title = {Conditions for the generalized numerical range to be real},
      author = {Marcus, Marvin and Sandy, Markus},
      journal = {Linear algebra and its applications},
      volume = {71},
      pages = {219--239},
      year = {1985},
      publisher = {Elsevier},
      url = {https://core.ac.uk/download/pdf/82435859.pdf}
    }
    
  65. [65]M.-T. Chien and H. Nakazato, “Davis–Wielandt shell and q-numerical range,” Linear Algebra and its Applications, vol. 340, no. 1-3, pp. 15–31, 2002, [Online]. Available at: https://core.ac.uk/download/pdf/82029923.pdf.
    @article{chien2002davis,
      title = {Davis--Wielandt shell and q-numerical range},
      author = {Chien, Mao-Ting and Nakazato, Hiroshi},
      journal = {Linear Algebra and its Applications},
      volume = {340},
      number = {1-3},
      pages = {15--31},
      year = {2002},
      publisher = {Elsevier},
      url = {https://core.ac.uk/download/pdf/82029923.pdf}
    }
    
  66. [66]M.-T. Chien and H. Nakazato, “The q-numerical range of a reducible matrix via a normal operator,” Linear Algebra and its Applications, vol. 419, no. 2-3, pp. 440–465, 2006, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0024379506002606.
    @article{chien2006q,
      title = {The q-numerical range of a reducible matrix via a normal operator},
      author = {Chien, Mao-Ting and Nakazato, Hiroshi},
      journal = {Linear Algebra and its Applications},
      volume = {419},
      number = {2-3},
      pages = {440--465},
      year = {2006},
      publisher = {North-Holland},
      url = {https://www.sciencedirect.com/science/article/pii/S0024379506002606}
    }
    
  67. [67]N.-K. Tsing, “The constrained bilinear form and the C-numerical range,” Linear Algebra and its Applications, vol. 56, pp. 195–206, 1984, [Online]. Available at: https://core.ac.uk/download/pdf/81931476.pdf.
    @article{tsing1984constrained,
      title = {The constrained bilinear form and the C-numerical range},
      author = {Tsing, Nam-Kiu},
      journal = {Linear Algebra and its Applications},
      volume = {56},
      pages = {195--206},
      year = {1984},
      publisher = {Elsevier},
      url = {https://core.ac.uk/download/pdf/81931476.pdf}
    }
    
  68. [68]C.-K. Li, “C-numerical ranges and C-numerical radii,” Linear and Multilinear Algebra, vol. 37, no. 1-3, pp. 51–82, 1994, [Online]. Available at: https://www.tandfonline.com/doi/abs/10.1080/03081089408818312?journalCode=glma20.
    @article{li1994c,
      title = {C-numerical ranges and C-numerical radii},
      author = {Li, Chi-Kwong},
      journal = {Linear and Multilinear Algebra},
      volume = {37},
      number = {1-3},
      pages = {51--82},
      year = {1994},
      publisher = {Taylor & Francis},
      url = {https://www.tandfonline.com/doi/abs/10.1080/03081089408818312?journalCode=glma20}
    }
    
  69. [69]R. Westwick, “A theorem on numerical range,” Linear and Multilinear Algebra, vol. 2, no. 4, pp. 311–315, 1975, [Online]. Available at: https://www.tandfonline.com/doi/abs/10.1080/03081087508817074?journalCode=glma20.
    @article{westwick1975theorem,
      title = {A theorem on numerical range},
      author = {Westwick, R},
      journal = {Linear and Multilinear Algebra},
      volume = {2},
      number = {4},
      pages = {311--315},
      year = {1975},
      publisher = {Taylor & Francis},
      url = {https://www.tandfonline.com/doi/abs/10.1080/03081087508817074?journalCode=glma20}
    }
    
  70. [70]K. Szymański, S. Weis, and K. Życzkowski, “Classification of joint numerical ranges of three hermitian matrices of size three,” Linear Algebra and its Applications, vol. 0, 2017, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0024379517306456.
    @article{szymanski2017classification,
      title = {Classification of joint numerical ranges of three hermitian matrices of size three},
      author = {Szymański, Konrad and Weis, Stephan and Życzkowski, Karol},
      journal = {Linear Algebra and its Applications},
      year = {2017},
      volume = {0},
      publisher = {Elsevier},
      url = {https://www.sciencedirect.com/science/article/pii/S0024379517306456}
    }
    
  71. [71]O. Toeplitz, “Das algebraische Analogon zu einem Satze von Fejer,” Mathematische Zeitschrift, vol. 2, no. 1, pp. 187–197, 1918, [Online]. Available at: https://link.springer.com/article/10.1007/BF01212904.
    @article{toeplitz1918algebraische,
      title = {Das algebraische Analogon zu einem Satze von Fejer},
      author = {Toeplitz, O.},
      journal = {Mathematische Zeitschrift},
      volume = {2},
      number = {1},
      pages = {187--197},
      year = {1918},
      publisher = {Springer},
      url = {https://link.springer.com/article/10.1007/BF01212904}
    }
    
  72. [72]F. Hausdorff, “Der Wertevorrat einer Bilinearform,” Mathematische Zeitschrift, vol. 3, no. 1, pp. 314–316, 1919, [Online]. Available at: https://link.springer.com/article/10.1007/BF01292610.
    @article{hausdorff1919wertvorrat,
      title = {Der Wertevorrat einer Bilinearform},
      author = {Hausdorff, F.},
      journal = {Mathematische Zeitschrift},
      volume = {3},
      number = {1},
      pages = {314--316},
      year = {1919},
      publisher = {Springer},
      url = {https://link.springer.com/article/10.1007/BF01292610}
    }
    
  73. [73]F. D. Murnaghan, “On the field of values of a square matrix,” Proceedings of the National Academy of Sciences of the United States of America, vol. 18, no. 3, p. 246, 1932, [Online]. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1076200/.
    @article{murnaghan1932field,
      title = {On the field of values of a square matrix},
      author = {Murnaghan, F. D},
      journal = {Proceedings of the National Academy of Sciences of the United States of America},
      volume = {18},
      number = {3},
      pages = {246},
      year = {1932},
      publisher = {National Academy of Sciences},
      url = {https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1076200/}
    }
    
  74. [74]R. Kippenhahn, “Uber den Wertevorrat einer matrix,” Mathematische Nachrichten, vol. 6, no. 3-4, pp. 193–228, 1951, [Online]. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/mana.19510060306.
    @article{kippenhahn1951wertevorrat,
      title = {Uber den Wertevorrat einer matrix},
      author = {Kippenhahn, R.},
      journal = {Mathematische Nachrichten},
      volume = {6},
      number = {3-4},
      pages = {193--228},
      year = {1951},
      publisher = {Wiley Online Library},
      url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/mana.19510060306}
    }
    
  75. [75]R. Horn and C. Johnson, Topics in matrix analysis. Cambridge university press, 1994.
    @book{horn1994topics,
      title = {Topics in matrix analysis},
      author = {Horn, R. and Johnson, C.},
      year = {1994},
      publisher = {Cambridge university press},
      url = {https://books.google.pl/books?hl=pl&lr=&id=LeuNXB2bl5EC&oi=fnd&pg=PR7&dq=Topics+in+matrix+analysis&ots=SoInB5ttwd&sig=fkBHTdWLHagVy9S1-oG-hIPWqLs&redir_esc=y#v=onepage&q=Topics%20in%20matrix%20analysis&f=false}
    }
    
  76. [76]K. E. Gustafson and D. K. M. Rao, Numerical range: The Field of Values of Linear Operators and Matrices. Springer, 1997.
    @book{gustafson1997numerical,
      title = {Numerical range: The Field of Values of Linear Operators and Matrices},
      author = {Gustafson, K. E. and Rao, D. K. M.},
      year = {1997},
      publisher = {Springer},
      url = {https://dx.doi.org/10.1007/978-1-4613-8498-4_1}
    }
    
  77. [77]E. Gutkin, “The Toeplitz-Hausdorff theorem revisited: relating linear algebra and geometry,” The Mathematical Intelligencer, vol. 26, no. 1, pp. 8–14, 2004, [Online]. Available at: https://link.springer.com/article/10.1007/BF02985393.
    @article{gutkin2004toeplitz,
      title = {The Toeplitz-Hausdorff theorem revisited: relating linear algebra and geometry},
      author = {Gutkin, E.},
      journal = {The Mathematical Intelligencer},
      volume = {26},
      number = {1},
      pages = {8--14},
      year = {2004},
      publisher = {Springer},
      url = {https://link.springer.com/article/10.1007/BF02985393}
    }
    
  78. [78]C. K. Li, “A simple proof of the elliptical range theorem,” Proceedings of the American Mathematical Society, vol. 124, no. 7, pp. 1985–1986, 1996, [Online]. Available at: https://www.researchgate.net/profile/Chi-Kwong_Li/publication/245067615_A_simple_proof_of_the_elliptical_range_theorem/links/540c53800cf2df04e753cb02.pdf.
    @article{li1996simple,
      title = {A simple proof of the elliptical range theorem},
      author = {Li, C. K.},
      journal = {Proceedings of the American Mathematical Society},
      volume = {124},
      number = {7},
      pages = {1985--1986},
      year = {1996},
      url = {https://www.researchgate.net/profile/Chi-Kwong_Li/publication/245067615_A_simple_proof_of_the_elliptical_range_theorem/links/540c53800cf2df04e753cb02.pdf}
    }
    
  79. [79]D. S. Keeler, L. Rodman, and I. M. Spitkovsky, “The numerical range of 3x3 matrices,” Linear Algebra and its Applications, vol. 252, no. 1-3, pp. 115–139, 1997, [Online]. Available at: https://dx.doi.org/10.1016/0024-3795(95)00674-5.
    @article{keeler1997numerical,
      title = {The numerical range of 3x3 matrices},
      author = {Keeler, D. S. and Rodman, L. and Spitkovsky, I. M.},
      journal = {Linear Algebra and its Applications},
      volume = {252},
      number = {1-3},
      pages = {115 - 139},
      year = {1997},
      url = {https://dx.doi.org/10.1016/0024-3795(95)00674-5}
    }
    
  80. [80]M. Crouzeix, “Open problems on Numerical range and functional calculus.” 2006, [Online]. Available at: https://perso.univ-rennes1.fr/michel.crouzeix/publis/NopPb.pdf.
    @misc{crouzeix2006open,
      title = {Open problems on Numerical range and functional calculus},
      author = {Crouzeix, M.},
      year = {2006},
      url = {https://perso.univ-rennes1.fr/michel.crouzeix/publis/NopPb.pdf}
    }
    
  81. [81]C. R. Johnson, “Numerical ranges of principal submatrices,” Linear Algebra and its Applications, vol. 1, pp. 23–34, 1981, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/0024379581901646.
    @article{johnson1981numerical,
      title = {Numerical ranges of principal submatrices},
      author = {Johnson, C. R.},
      journal = {Linear Algebra and its Applications},
      volume = {1},
      pages = {23-34},
      year = {1981},
      url = {https://www.sciencedirect.com/science/article/pii/0024379581901646}
    }
    
  82. [82]K. Szymański, “Uncertainty relations and joint numerical ranges,” arXiv preprint arXiv:1707.03464, vol. 0, 2017, [Online]. Available at: https://arxiv.org/abs/1707.03464.
    @article{szymanski2017uncertainty,
      title = {Uncertainty relations and joint numerical ranges},
      author = {Szymański, Konrad},
      journal = {arXiv preprint arXiv:1707.03464},
      year = {2017},
      volume = {0},
      url = {https://arxiv.org/abs/1707.03464}
    }
    
  83. [83]C. R. Johnson, “Normality and the numerical range,” Linear Algebra and its Applications, vol. 37, no. 1, pp. 89–94, 1976, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/002437957690080X.
    @article{johnson1976normality,
      title = {Normality and the numerical range},
      author = {Johnson, C. R.},
      journal = {Linear Algebra and its Applications},
      volume = {37},
      number = {1},
      pages = {89--94},
      year = {1976},
      publisher = {Elsevier},
      url = {https://www.sciencedirect.com/science/article/pii/002437957690080X}
    }
    
  84. [84]P. Nylen and T. Y. Tam, “Numerical range of a doubly stochastic matrix,” Linear Algebra and Its Applications, vol. 153, pp. 161–176, 1991, [Online]. Available at: https://core.ac.uk/download/pdf/82400308.pdf.
    @article{nylen1991numerical,
      title = {Numerical range of a doubly stochastic matrix},
      author = {Nylen, P. and Tam, T. Y.},
      journal = {Linear Algebra and Its Applications},
      volume = {153},
      pages = {161--176},
      year = {1991},
      publisher = {Elsevier},
      url = {https://core.ac.uk/download/pdf/82400308.pdf}
    }
    
  85. [85]P. J. Psarrakos and M. J. Tsatsomeros, “Numerical ​range:(in) a matrix nutshell.” Department of Mathematics,​ Washington State University, 2002, [Online]. Available at: http://www.sci.wsu.edu/math/faculty/tsat/files/numrange.pdf.
    @misc{psarrakos2002numerical,
      title = {Numerical ​range:(in) a matrix nutshell},
      author = {Psarrakos, Panayiotis J and Tsatsomeros, Michael J},
      year = {2002},
      publisher = {Department of Mathematics,​ Washington State University},
      url = {http://www.sci.wsu.edu/math/faculty/tsat/files/numrange.pdf}
    }
    
  86. [86]C. Chorianopoulos, S. Karanasios, and P. Psarrakos, “A definition of numerical range of rectangular matrices,” Linear and Multilinear Algebra, vol. 57, no. 5, pp. 459–475, 2009, [Online]. Available at: https://www.tandfonline.com/doi/abs/10.1080/03081080802466365.
    @article{chorianopoulos2009definition,
      title = {A definition of numerical range of rectangular matrices},
      author = {Chorianopoulos, Ch. and Karanasios, S. and Psarrakos, P.},
      journal = {Linear and Multilinear Algebra},
      volume = {57},
      number = {5},
      pages = {459--475},
      year = {2009},
      publisher = {Taylor & Francis},
      url = {https://www.tandfonline.com/doi/abs/10.1080/03081080802466365}
    }
    
  87. [87]J. H. Shapiro, “Notes on the numerical range,” Lecture Notes, Michigan State University. 2004, [Online]. Available at: https://pdfs.semanticscholar.org/c6ba/fcc5e5fe8ba105e3dc86b498f95022db1984.pdf.
    @misc{shapiro2004notes,
      title = {Notes on the numerical range},
      author = {Shapiro, J. H.},
      journal = {Lecture Notes, Michigan State University},
      year = {2004},
      url = {https://pdfs.semanticscholar.org/c6ba/fcc5e5fe8ba105e3dc86b498f95022db1984.pdf}
    }
    
  88. [88]P. Skoufranis, “Numerical Ranges of Operators.” 2012.
    @misc{skoufranis2012numerical,
      title = {Numerical Ranges of Operators},
      author = {Skoufranis, P.},
      year = {2012}
    }
    
  89. [89]R. Carden, “A simple algorithm for the inverse field of values problem,” Inverse Problems, vol. 25, no. 11, p. 115019, 2009, [Online]. Available at: https://iopscience.iop.org/article/10.1088/0266-5611/25/11/115019/pdf.
    @article{carden2009simple,
      title = {A simple algorithm for the inverse field of values problem},
      author = {Carden, Russell},
      journal = {Inverse Problems},
      volume = {25},
      number = {11},
      pages = {115019},
      year = {2009},
      publisher = {IOP Publishing},
      url = {https://iopscience.iop.org/article/10.1088/0266-5611/25/11/115019/pdf}
    }
    
  90. [90]M. Goldberg and E. Straus, “On characterizations and integrals of generalized numerical ranges,” Pacific Journal of Mathematics, vol. 69, no. 1, pp. 45–54, 1977, [Online]. Available at: https://msp.org/pjm/1977/69-1/p06.xhtml.
    @article{goldberg1977characterizations,
      title = {On characterizations and integrals of generalized numerical ranges},
      author = {Goldberg, Moshe and Straus, Ernst},
      journal = {Pacific Journal of Mathematics},
      volume = {69},
      number = {1},
      pages = {45--54},
      year = {1977},
      url = {https://msp.org/pjm/1977/69-1/p06.xhtml}
    }
    
  91. [91]M. Goldberg, “On certain finite dimensional numerical ranges and numerical radii,” Linear and Multilinear Algebra, vol. 7, no. 4, pp. 329–342, 1979, [Online]. Available at: https://www.tandfonline.com/doi/abs/10.1080/03081087908817291?journalCode=glma20.
    @article{goldberg1979certain,
      title = {On certain finite dimensional numerical ranges and numerical radii},
      author = {Goldberg, Moshe},
      journal = {Linear and Multilinear Algebra},
      volume = {7},
      number = {4},
      pages = {329--342},
      year = {1979},
      publisher = {Taylor & Francis},
      url = {https://www.tandfonline.com/doi/abs/10.1080/03081087908817291?journalCode=glma20}
    }
    
  92. [92]J. Stampfli, “The norm of a derivation,” Pacific journal of mathematics, vol. 33, no. 3, pp. 737–747, 1970, [Online]. Available at: https://msp.org/pjm/1970/33-3/p18.xhtml.
    @article{stampfli1970norm,
      title = {The norm of a derivation},
      author = {Stampfli, Joseph},
      journal = {Pacific journal of mathematics},
      volume = {33},
      number = {3},
      pages = {737--747},
      year = {1970},
      publisher = {Mathematical Sciences Publishers},
      url = {https://msp.org/pjm/1970/33-3/p18.xhtml}
    }
    
  93. [93]M. Fiedler, “Geometry of the numerical range of matrices,” Linear Algebra and its Applications, vol. 37, pp. 81–96, 1981, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/0024379581901695.
    @article{fiedler1981geometry,
      title = {Geometry of the numerical range of matrices},
      author = {Fiedler, M.},
      journal = {Linear Algebra and its Applications},
      volume = {37},
      pages = {81--96},
      year = {1981},
      publisher = {Elsevier},
      url = {https://www.sciencedirect.com/science/article/pii/0024379581901695}
    }
    
  94. [94]E. A. Jonckheere, F. Ahmad, and E. Gutkin, “Differential topology of numerical range,” Linear algebra and its applications, vol. 279, no. 1, pp. 227–254, 1998, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0024379598000214.
    @article{jonckheere1998differential,
      title = {Differential topology of numerical range},
      author = {Jonckheere, E. A. and Ahmad, F. and Gutkin, E.},
      journal = {Linear algebra and its applications},
      volume = {279},
      number = {1},
      pages = {227--254},
      year = {1998},
      publisher = {Elsevier},
      url = {https://www.sciencedirect.com/science/article/pii/S0024379598000214}
    }
    
  95. [95]D. Henrion, “Semidefinite geometry of the numerical range,” Electronic Journal of Linear Algebra, vol. 20, pp. 322–332, 2010, [Online]. Available at: https://www.math.technion.ac.il/iic/ela/ela-articles/articles/vol20_pp322-332.pdf.
    @article{henrion2010semidefinite,
      title = {Semidefinite geometry of the numerical range},
      author = {Henrion, D.},
      journal = {Electronic Journal of Linear Algebra},
      volume = {20},
      pages = {322-332},
      year = {2010},
      url = {https://www.math.technion.ac.il/iic/ela/ela-articles/articles/vol20_pp322-332.pdf}
    }
    
  96. [96]J. W. Helton and I. M. Spitkovsky, “The possible shapes of numerical ranges,” arXiv preprint arXiv:1104.4587, vol. 0, 2011, [Online]. Available at: https://arxiv.org/abs/1104.4587.
    @article{helton2011possible,
      title = {The possible shapes of numerical ranges},
      author = {Helton, J. W. and Spitkovsky, I. M.},
      journal = {arXiv preprint arXiv:1104.4587},
      year = {2011},
      volume = {0},
      url = {https://arxiv.org/abs/1104.4587}
    }
    
  97. [97]M. T. Chien and Y. H. Lin, “On the area of numerical range,” Ssoochow Journal of Mathematics, vol. 26, no. 3, pp. 255–270, 2000, [Online]. Available at: http://mathlab.math.scu.edu.tw/mp/pdf/S26N33.pdf.
    @article{chien2000area,
      title = {On the area of numerical range},
      author = {Chien, M. T. and Lin, Y. H.},
      journal = {Ssoochow Journal of Mathematics},
      volume = {26},
      number = {3},
      pages = {255--270},
      year = {2000},
      publisher = {Soochow University},
      url = {http://mathlab.math.scu.edu.tw/mp/pdf/S26N33.pdf}
    }
    
  98. [98]J. Eldred, L. Rodman, and I. Spitkovsky, “Numerical ranges of companion matrices: flat portions on the boundary,” Linear and Multilinear Algebra, vol. 60, no. 11-12, pp. 1295–1311, 2012, [Online]. Available at: https://www.tandfonline.com/doi/abs/10.1080/03081087.2011.634415.
    @article{eldred2012numerical,
      title = {Numerical ranges of companion matrices: flat portions on the boundary},
      author = {Eldred, Jeffrey and Rodman, Leiba and Spitkovsky, Ilya},
      journal = {Linear and Multilinear Algebra},
      volume = {60},
      number = {11-12},
      pages = {1295--1311},
      year = {2012},
      publisher = {Taylor \& Francis},
      url = {https://www.tandfonline.com/doi/abs/10.1080/03081087.2011.634415}
    }
    
  99. [99]J. Maroulas and P. Psarrakos, “Geometrical properties of numerical range of matrix polynomials,” Computers & Mathematics with Applications, vol. 31, no. 4-5, pp. 41–47, 1996, [Online]. Available at: https://core.ac.uk/download/pdf/82399792.pdf.
    @article{maroulas1996geometrical,
      title = {Geometrical properties of numerical range of matrix polynomials},
      author = {Maroulas, J and Psarrakos, P},
      journal = {Computers \& Mathematics with Applications},
      volume = {31},
      number = {4-5},
      pages = {41--47},
      year = {1996},
      publisher = {Pergamon},
      url = {https://core.ac.uk/download/pdf/82399792.pdf}
    }
    
  100. [100]M. Goldberg and E. G. Straus, “Elementary inclusion relations for generalized numerical ranges,” Linear Algebra and Its Applications, vol. 18, no. 1, pp. 1–24, 1977, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/0024379577900751.
    @article{goldberg1977elementary,
      title = {Elementary inclusion relations for generalized numerical ranges},
      author = {Goldberg, Moshe and Straus, EG},
      journal = {Linear Algebra and Its Applications},
      volume = {18},
      number = {1},
      pages = {1--24},
      year = {1977},
      publisher = {Elsevier},
      url = {https://www.sciencedirect.com/science/article/pii/0024379577900751}
    }
    
  101. [101]I. M. Spitkovsky and S. Weis, “Pre-images of extreme points of the numerical range, and applications,” arXiv preprint arXiv:1509.05676, vol. 0, 2015, [Online]. Available at: https://arxiv.org/abs/1509.05676.
    @article{spitkovsky2015pre,
      title = {Pre-images of extreme points of the numerical range, and applications},
      author = {Spitkovsky, Ilya M and Weis, Stephan},
      journal = {arXiv preprint arXiv:1509.05676},
      year = {2015},
      volume = {0},
      url = {https://arxiv.org/abs/1509.05676}
    }
    
  102. [102]E. Militzer, L. J. Patton, I. M. Spitkovsky, and M.-C. Tsai, “Numerical Ranges of 4-by-4 Nilpotent Matrices: Flat Portions on the Boundary,” in Large Truncated Toeplitz Matrices, Toeplitz Operators, and Related Topics, Springer, 2017, pp. 561–591.
    @incollection{militzer2017numerical,
      title = {Numerical Ranges of 4-by-4 Nilpotent Matrices: Flat Portions on the Boundary},
      author = {Militzer, Erin and Patton, Linda J and Spitkovsky, Ilya M and Tsai, Ming-Cheng},
      booktitle = {Large Truncated Toeplitz Matrices, Toeplitz Operators, and Related Topics},
      pages = {561--591},
      year = {2017},
      publisher = {Springer},
      url = {https://link.springer.com/chapter/10.1007/978-3-319-49182-0_23}
    }
    
  103. [103]E. Gutkin, E. A. Jonckheere, and M. Karow, “Convexity of the joint numerical range: topological and differential geometric viewpoints,” Linear algebra and its applications, vol. 376, pp. 143–171, 2004, [Online]. Available at: https://www.mis.mpg.de/de/publications/mis-preprints/2003/prepr2003-1.html.
    @article{gutkin2004convexity,
      title = {Convexity of the joint numerical range: topological and differential geometric viewpoints},
      author = {Gutkin, E. and Jonckheere, E.A. and Karow, M.},
      journal = {Linear algebra and its applications},
      volume = {376},
      pages = {143--171},
      year = {2004},
      publisher = {Elsevier},
      url = {https://www.mis.mpg.de/de/publications/mis-preprints/2003/prepr2003-1.html}
    }
    
  104. [104]N. Krupnik and I. M. Spitkovsky, “Sets of matrices with given joint numerical range,” Linear algebra and its applications, vol. 419, no. 2, pp. 569–585, 2006, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0024379506002709.
    @article{krupnik2006sets,
      title = {Sets of matrices with given joint numerical range},
      author = {Krupnik, N. and Spitkovsky, I. M.},
      journal = {Linear algebra and its applications},
      volume = {419},
      number = {2},
      pages = {569--585},
      year = {2006},
      publisher = {Elsevier},
      url = {https://www.sciencedirect.com/science/article/pii/S0024379506002709}
    }
    
  105. [105]A. Abdollahi, “The polynomial numerical hull of a matrix and algorithms for computing the numerical range,” Applied mathematics and computation, vol. 180, no. 2, pp. 635–640, 2006, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S009630030600052X.
    @article{abdollahi2006the,
      title = {The polynomial numerical hull of a matrix and algorithms for computing the numerical range},
      author = {Abdollahi, A},
      journal = {Applied mathematics and computation},
      volume = {180},
      number = {2},
      pages = {635--640},
      year = {2006},
      publisher = {Elsevier},
      url = {https://www.sciencedirect.com/science/article/pii/S009630030600052X}
    }
    
  106. [106]H. Li and X. Liu, “Elliptic Numerical Ranges of 4 x 4 Matrices,” in 2009 ETP International Conference on Future Computer and Communication, IEEE, 2009, pp. 190–193.
    @incollection{gau2006elliptic,
      title = {Elliptic Numerical Ranges of 4 x 4 Matrices},
      author = {Li, Hongkui and Liu, Xueting},
      booktitle = {2009 ETP International Conference on Future Computer and Communication},
      pages = {190--193},
      year = {2009},
      publisher = {IEEE},
      url = {https://ieeexplore.ieee.org/abstract/document/5235673}
    }
    
  107. [107]Z. Puchała, P. Gawron, J. A. Miszczak, Ł. Skowronek, M. D. Choi, and K. Życzkowski, “Product numerical range in a space with tensor product structure,” Linear Algebra and its Applications, vol. 434, no. 1, pp. 327–342, 2011, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0024379510004349.
    @article{puchala2011product,
      title = {Product numerical range in a space with tensor product structure},
      author = {Puchała, Z. and Gawron, P. and Miszczak, J.A. and Skowronek, Ł. and Choi, M.D. and Życzkowski, K.},
      journal = {Linear Algebra and its Applications},
      volume = {434},
      number = {1},
      pages = {327--342},
      year = {2011},
      publisher = {Elsevier},
      url = {https://www.sciencedirect.com/science/article/pii/S0024379510004349}
    }
    
  108. [108]J. W. Helton and I. M. Spitkovsky, “The possible shapes of numerical ranges,” arXiv:1104.4587, vol. 1, pp. 1–4, 2011, [Online]. Available at: https://arxiv.org/abs/1104.4587.
    @article{helton2011the,
      title = {The possible shapes of numerical ranges},
      author = {Helton, J. W. and Spitkovsky, I. M.},
      journal = {arXiv:1104.4587},
      volume = {1},
      pages = {1-4},
      year = {2011},
      url = {https://arxiv.org/abs/1104.4587}
    }
    
  109. [109]W.-S. Cheung and C.-K. Li, “Elementary proofs for some results on the circular symmetry of the numerical range,” Linear and Multilinear Algebra, vol. 61, no. 5, pp. 596–602, 2013, [Online]. Available at: https://www.tandfonline.com/doi/abs/10.1080/03081087.2012.696251.
    @article{cheung2012elementary,
      title = {Elementary proofs for some results on the circular symmetry of the numerical range},
      author = {Cheung, Wai-Shun and Li, Chi-Kwong},
      journal = {Linear and Multilinear Algebra},
      volume = {61},
      number = {5},
      pages = {596--602},
      year = {2013},
      publisher = {Taylor \& Francis},
      url = {https://www.tandfonline.com/doi/abs/10.1080/03081087.2012.696251}
    }
    
  110. [110]J. Jurkowski, A. Rutkowski, and D. Chruściński, “Local numerical range for a class of 2⊗ d Hermitian operators,” Open Systems & Information Dynamics, vol. 17, no. 04, pp. 347–359, 2010, [Online]. Available at: https://www.worldscientific.com/doi/abs/10.1142/S1230161210000229.
    @article{jurkowski2010local,
      title = {Local numerical range for a class of 2⊗ d Hermitian operators},
      author = {Jurkowski, Jacek and Rutkowski, Adam and Chruściński, D},
      journal = {Open Systems \& Information Dynamics},
      volume = {17},
      number = {04},
      pages = {347--359},
      year = {2010},
      publisher = {World Scientific},
      url = {https://www.worldscientific.com/doi/abs/10.1142/S1230161210000229}
    }
    
  111. [111]M. D. Choi, J. A. Holbrook, D. W. Kribs, and K. Życzkowski, “Higher-rank numerical ranges of unitary and normal matrices,” Operators and Matrices, vol. 1, pp. 409–426, 2007, [Online]. Available at: https://www.semanticscholar.org/paper/HIGHER-RANK-NUMERICAL-RANGES-OF-UNITARY-AND-NORMAL-Choi-Holbrook/5b13b6b5a92ce54bbf1699375a3ba26cbceb90ae.
    @article{choi2007higher,
      title = {Higher-rank numerical ranges of unitary and normal matrices},
      author = {Choi, M. D. and Holbrook, J. A. and Kribs, D. W and Życzkowski, K.},
      journal = {Operators and Matrices},
      year = {2007},
      volume = {1},
      pages = {409--426},
      url = {https://www.semanticscholar.org/paper/HIGHER-RANK-NUMERICAL-RANGES-OF-UNITARY-AND-NORMAL-Choi-Holbrook/5b13b6b5a92ce54bbf1699375a3ba26cbceb90ae}
    }
    
  112. [112]M. D. Choi, M. Giesinger, J. A. Holbrook, and D. W. Kribs, “Geometry of higher-rank numerical ranges,” Linear and Multilinear Algebra, vol. 56, no. 1-2, pp. 53–64, 2008, [Online]. Available at: https://www.tandfonline.com/doi/abs/10.1080/03081080701336545.
    @article{choi2008geometry,
      title = {Geometry of higher-rank numerical ranges},
      author = {Choi, M. D. and Giesinger, M. and Holbrook, J. A. and Kribs, D. W.},
      journal = {Linear and Multilinear Algebra},
      volume = {56},
      number = {1-2},
      pages = {53--64},
      year = {2008},
      publisher = {Taylor & Francis},
      url = {https://www.tandfonline.com/doi/abs/10.1080/03081080701336545}
    }
    
  113. [113]H. J. Woerdeman, “The higher rank numerical range is convex,” Linear and Multilinear Algebra, vol. 56, no. 1-2, pp. 65–67, 2008, [Online]. Available at: https://www.tandfonline.com/doi/abs/10.1080/03081080701352211.
    @article{woerdeman2008higher,
      title = {The higher rank numerical range is convex},
      author = {Woerdeman, H. J.},
      journal = {Linear and Multilinear Algebra},
      volume = {56},
      number = {1-2},
      pages = {65--67},
      year = {2008},
      publisher = {Taylor & Francis},
      url = {https://www.tandfonline.com/doi/abs/10.1080/03081080701352211}
    }
    
  114. [114]C. K. Li and N. S. Sze, “Canonical forms, higher rank numerical ranges, totally isotropic subspaces, and matrix equations,” Proceedings of the American Mathematical Society, vol. 136, no. 9, pp. 3013–3023, 2008, [Online]. Available at: https://www.ams.org/journals/proc/2008-136-09/S0002-9939-08-09536-1/.
    @article{li2008canonical,
      title = {Canonical forms, higher rank numerical ranges, totally isotropic subspaces, and matrix equations},
      author = {Li, C. K and Sze, N. S.},
      journal = {Proceedings of the American Mathematical Society},
      volume = {136},
      number = {9},
      pages = {3013--3023},
      year = {2008},
      url = {https://www.ams.org/journals/proc/2008-136-09/S0002-9939-08-09536-1/}
    }
    
  115. [115]C. K. Li, Y. T. Poon, and N. S. Sze, “Condition for the higher rank numerical range to be non-empty,” Linear and Multilinear Algebra, vol. 57, no. 4, pp. 365–368, 2009, [Online]. Available at: https://www.tandfonline.com/doi/abs/10.1080/03081080701786384.
    @article{li2009condition,
      title = {Condition for the higher rank numerical range to be non-empty},
      author = {Li, C. K. and Poon, Y. T. and Sze, N. S.},
      journal = {Linear and Multilinear Algebra},
      volume = {57},
      number = {4},
      pages = {365--368},
      year = {2009},
      publisher = {Taylor & Francis},
      url = {https://www.tandfonline.com/doi/abs/10.1080/03081080701786384}
    }
    
  116. [116]H.-L. Gau, C.-K. Li, and P. Y. Wu, “Higher-rank numerical ranges and dilations,” Journal of Operator Theory, vol. 0, pp. 181–189, 2010, [Online]. Available at: https://www.jstor.org/stable/24715918.
    @article{gau2010higher,
      title = {Higher-rank numerical ranges and dilations},
      author = {Gau, Hwa-Long and Li, Chi-Kwong and Wu, Pei Yuan},
      journal = {Journal of Operator Theory},
      pages = {181--189},
      year = {2010},
      volume = {0},
      publisher = {JSTOR},
      url = {https://www.jstor.org/stable/24715918}
    }
    
  117. [117]M. D. Choi, D. W. Kribs, and K. Życzkowski, “Higher-rank numerical ranges and compression problems,” Linear algebra and its applications, vol. 418, no. 2, pp. 828–839, 2006, [Online]. Available at: https://arxiv.org/abs/math/0511278.
    @article{choi2006higher,
      title = {Higher-rank numerical ranges and compression problems},
      author = {Choi, M. D. and Kribs, D. W. and Życzkowski, K.},
      journal = {Linear algebra and its applications},
      volume = {418},
      number = {2},
      pages = {828--839},
      year = {2006},
      url = {https://arxiv.org/abs/math/0511278}
    }
    
  118. [118]M.-T. Chien and H. Nakazato, “The boundary of higher rank numerical ranges,” Linear algebra and its applications, vol. 435, no. 11, pp. 2971–2985, 2011, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0024379511004253.
    @article{chien2011boundary,
      title = {The boundary of higher rank numerical ranges},
      author = {Chien, Mao-Ting and Nakazato, Hiroshi},
      journal = {Linear algebra and its applications},
      volume = {435},
      number = {11},
      pages = {2971--2985},
      year = {2011},
      publisher = {Elsevier},
      url = {https://www.sciencedirect.com/science/article/pii/S0024379511004253}
    }
    
  119. [119]H.-L. Gau and P. Y. Wu, “Higher-rank numerical ranges and Kippenhahn polynomials,” Linear Algebra and its Applications, vol. 438, no. 7, pp. 3054–3061, 2013, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0024379512008221.
    @article{gau2013higher,
      title = {Higher-rank numerical ranges and Kippenhahn polynomials},
      author = {Gau, Hwa-Long and Wu, Pei Yuan},
      journal = {Linear Algebra and its Applications},
      volume = {438},
      number = {7},
      pages = {3054--3061},
      year = {2013},
      publisher = {Elsevier},
      url = {https://www.sciencedirect.com/science/article/pii/S0024379512008221}
    }
    
  120. [120]H.-L. Gau, C.-K. Li, Y.-T. Poon, and N.-S. Sze, “Higher rank numerical ranges of normal matrices,” SIAM Journal on Matrix Analysis and Applications, vol. 32, no. 1, pp. 23–43, 2011, [Online]. Available at: https://epubs.siam.org/doi/abs/10.1137/09076430X.
    @article{gau2011higher,
      title = {Higher rank numerical ranges of normal matrices},
      author = {Gau, Hwa-Long and Li, Chi-Kwong and Poon, Yiu-Tung and Sze, Nung-Sing},
      journal = {SIAM Journal on Matrix Analysis and Applications},
      volume = {32},
      number = {1},
      pages = {23--43},
      year = {2011},
      publisher = {SIAM},
      url = {https://epubs.siam.org/doi/abs/10.1137/09076430X}
    }
    
  121. [121]J. Holbrook, N. Mudalige, M. Newman, and R. Pereira, “Bounds on polygons of higher rank numerical ranges,” Linear Algebra and its Applications, vol. 474, pp. 230–242, 2015, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0024379515000166.
    @article{holbrook2015bounds,
      title = {Bounds on polygons of higher rank numerical ranges},
      author = {Holbrook, John and Mudalige, Nishan and Newman, Mike and Pereira, Rajesh},
      journal = {Linear Algebra and its Applications},
      volume = {474},
      pages = {230--242},
      year = {2015},
      publisher = {Elsevier},
      url = {https://www.sciencedirect.com/science/article/pii/S0024379515000166}
    }
    
  122. [122]G. Najarbashi, S. Ahadpour, M. A. Fasihi, and Y. Tavakoli, “Geometry of a two-qubit state and intertwining quaternionic conformal mapping under local unitary transformations,” Journal of Physics A: Mathematical and Theoretical, vol. 40, no. 24, p. 6481, 2007, [Online]. Available at: https://iopscience.iop.org/article/10.1088/1751-8113/40/24/014.
    @article{najarbashi2007geometry,
      title = {Geometry of a two-qubit state and intertwining quaternionic conformal mapping under local unitary transformations},
      author = {Najarbashi, G and Ahadpour, S and Fasihi, MA and Tavakoli, Y},
      journal = {Journal of Physics A: Mathematical and Theoretical},
      volume = {40},
      number = {24},
      pages = {6481},
      year = {2007},
      publisher = {IOP Publishing},
      url = {https://iopscience.iop.org/article/10.1088/1751-8113/40/24/014}
    }
    
  123. [123]D. W. Kribs, A. Pasieka, M. Laforest, C. Ryan, and M. P. da Silva, “Research problems on numerical ranges in quantum computing,” Linear and Multilinear Algebra, vol. 57, no. 5, pp. 491–502, 2009, [Online]. Available at: https://www.tandfonline.com/doi/abs/10.1080/03081080802677441.
    @article{kribs2009research,
      title = {Research problems on numerical ranges in quantum computing},
      author = {Kribs, D. W. and Pasieka, A. and Laforest, M. and Ryan, C. and da Silva, M. P.},
      journal = {Linear and Multilinear Algebra},
      volume = {57},
      number = {5},
      pages = {491--502},
      year = {2009},
      publisher = {Taylor & Francis},
      url = {https://www.tandfonline.com/doi/abs/10.1080/03081080802677441}
    }
    
  124. [124]T. Schulte-Herbruggen, G. Dirr, U. Helmke, and S. J. Glaser, “The significance of the C-numerical range and the local C-numerical range in quantum control and quantum information,” Linear and Multilinear Algebra, vol. 56, no. 1-2, pp. 3–26, 2008, [Online]. Available at: https://www.tandfonline.com/doi/abs/10.1080/03081080701544114.
    @article{schulte2008significance,
      title = {The significance of the C-numerical range and the local C-numerical range in quantum control and quantum information},
      author = {Schulte-Herbruggen, T. and Dirr, G. and Helmke, U. and Glaser, S. J.},
      journal = {Linear and Multilinear Algebra},
      volume = {56},
      number = {1-2},
      pages = {3--26},
      year = {2008},
      publisher = {Taylor & Francis},
      url = {https://www.tandfonline.com/doi/abs/10.1080/03081080701544114}
    }
    
  125. [125]P. Gawron, Z. Puchała, J. A. Miszczak, Ł. Skowronek, and K. Życzkowski, “Restricted numerical range: a versatile tool in the theory of quantum information,” Journal of mathematical physics, vol. 51, no. 10, p. 102204, 2010, [Online]. Available at: https://aip.scitation.org/doi/abs/10.1063/1.3496901.
    @article{gawron2010restricted,
      title = {Restricted numerical range: a versatile tool in the theory of quantum information},
      author = {Gawron, Piotr and Puchała, Zbigniew and Miszczak, Jarosław Adam and Skowronek, Łukasz and Życzkowski, Karol},
      journal = {Journal of mathematical physics},
      volume = {51},
      number = {10},
      pages = {102204},
      year = {2010},
      publisher = {American Institute of Physics},
      url = {https://aip.scitation.org/doi/abs/10.1063/1.3496901}
    }
    
  126. [126]K. Życzkowski et al., “Generalized numerical range as a versatile tool to study quantum entanglement,” Oberwolfach Report, vol. 59, no. 1-2, pp. 34–37, 2009, [Online]. Available at: https://chaos.if.uj.edu.pl/ karol/pdf2/zyczkowski2dec09.pdf.
    @article{zyczkowski2009generalized,
      title = {Generalized numerical range as a versatile tool to study quantum entanglement},
      author = {Życzkowski, K. and Choi, M.-D. and Dunkl, C. and Holbrook, J. and Gawron, P. and Miszczak, J. A. and Puchala, Z. and Skowronek, Ł.},
      journal = {Oberwolfach Report},
      volume = {59},
      number = {1-2},
      pages = {34-37},
      year = {2009},
      url = {https://chaos.if.uj.edu.pl/~karol/pdf2/zyczkowski2dec09.pdf}
    }
    
  127. [127]C. F. Dunkl, P. Gawron, J. A. Holbrook, J. A. Miszczak, Z. Puchała, and K. Życzkowski, “Numerical shadow and geometry of quantum states,” Journal of Physics A: Mathematical and Theoretical, vol. 44, p. 335301, 2011, [Online]. Available at: https://iopscience.iop.org/article/10.1088/1751-8113/44/33/335301/meta.
    @article{dunkl2011numerical1,
      title = {Numerical shadow and geometry of quantum states},
      author = {Dunkl, C.F. and Gawron, P. and Holbrook, J.A. and Miszczak, J.A. and Puchała, Z. and Życzkowski, K.},
      journal = {Journal of Physics A: Mathematical and Theoretical},
      volume = {44},
      pages = {335301},
      year = {2011},
      publisher = {IOP Publishing},
      url = {https://iopscience.iop.org/article/10.1088/1751-8113/44/33/335301/meta}
    }
    
  128. [128]C. F. Dunkl, P. Gawron, J. A. Holbrook, Z. Puchała, and K. Zyczkowski, “Numerical shadows: measures and densities on the numerical range,” Linear Algebra and its Applications, vol. 434, no. 9, pp. 2042–2080, 2011, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0024379510006397.
    @article{dunkl2011numerical2,
      title = {Numerical shadows: measures and densities on the numerical range},
      author = {Dunkl, C.F. and Gawron, P. and Holbrook, J.A. and Puchała, Z. and Zyczkowski, K.},
      journal = {Linear Algebra and its Applications},
      volume = {434},
      number = {9},
      pages = {2042--2080},
      year = {2011},
      publisher = {North-Holland},
      url = {https://www.sciencedirect.com/science/article/pii/S0024379510006397}
    }
    
  129. [129]I. Bengtsson, S. Weis, and K. Życzkowski, “Geometry of the set of mixed quantum states: An apophatic approach,” in Geometric Methods in Physics, Springer, 2013, pp. 175–197.
    @incollection{bengtsson2011geometry,
      title = {Geometry of the set of mixed quantum states: An apophatic approach},
      author = {Bengtsson, Ingemar and Weis, Stephan and Życzkowski, Karol},
      booktitle = {Geometric Methods in Physics},
      pages = {175--197},
      year = {2013},
      publisher = {Springer},
      url = {https://link.springer.com/chapter/10.1007/978-3-0348-0448-6_15}
    }
    
  130. [130]E. Gutkin and K. Życzkowski, “Joint numerical ranges, quantum maps, and joint numerical shadows,” Linear Algebra and its Applications, vol. 438, no. 5, pp. 2394–2404, 2013, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0024379512007732.
    @article{gutkin2013joint,
      title = {Joint numerical ranges, quantum maps, and joint numerical shadows},
      author = {Gutkin, Eugene and Życzkowski, Karol},
      journal = {Linear Algebra and its Applications},
      volume = {438},
      number = {5},
      pages = {2394--2404},
      year = {2013},
      publisher = {Elsevier},
      url = {https://www.sciencedirect.com/science/article/pii/S0024379512007732}
    }
    
  131. [131]T. Gallay and D. Serre, “Numerical measure of a complex matrix,” Communications on Pure and Applied Mathematics, vol. 65, no. 3, pp. 287–336, 2012, [Online]. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.20374.
    @article{gallay2010the,
      title = {Numerical measure of a complex matrix},
      author = {Gallay, Thierry and Serre, Denis},
      journal = {Communications on Pure and Applied Mathematics},
      volume = {65},
      number = {3},
      pages = {287--336},
      year = {2012},
      publisher = {Wiley Online Library},
      url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.20374}
    }
    
  132. [132]Z. Puchała, J. A. Miszczak, P. Gawron, C. F. Dunkl, J. A. Holbrook, and K. Życzkowski, “Restricted numerical shadow and geometry of quantum entanglement,” Journal of Physics A: Mathematical and Theoretical, vol. 45, no. 41, p. 415309, 2012, [Online]. Available at: https://d1wqtxts1xzle7.cloudfront.net/40538136/Restricted_numerical_shadow_and_geometry20151201-28343-1tqkl28.pdf?1448978875=&response-content-disposition=inline%3B+filename%3DRestricted_numerical_shadow_and_the_geom.pdf&Expires=1592565216&Signature=Hejde5pW2ID8kfVbbr4wAHu9SsM221OAQUiQ21j6SW-rMFjUCgWyXtlxji-gowYWowFcbjFHF4XMCc3ieuGOozuW9PiuPtPvd W7pK6tfWiTywFcNEbu3XfuC5fbYdb6A zL5kIlS6yKX5E4Bldoe-V424Mbk6JehrCaJ7-HEL8kYH21aZt DAI7RX4BEF cRtjTVYf8I0PcJAZMIn iCum0D0sI1MsMCYpnUHHe0J-WpGnDGo509mszZlIZYfAzoQfdVPpCRVhc6WUvkGnI5Eeyl6 NjJ4mEjvCAOXETEcNtl1ktGKRtMK 5pDe96SsPTTg3JQBg8YtgqvZlQJKlQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA.
    @article{puchala2012restricted,
      title = {Restricted numerical shadow and geometry of quantum entanglement},
      author = {Puchała, Z. and Miszczak, J.A. and Gawron, P. and Dunkl, C.F. and Holbrook, J.A. and Życzkowski, K.},
      journal = {Journal of Physics A: Mathematical and Theoretical},
      volume = {45},
      number = {41},
      pages = {415309},
      year = {2012},
      url = {https://d1wqtxts1xzle7.cloudfront.net/40538136/Restricted_numerical_shadow_and_geometry20151201-28343-1tqkl28.pdf?1448978875=&response-content-disposition=inline%3B+filename%3DRestricted_numerical_shadow_and_the_geom.pdf&Expires=1592565216&Signature=Hejde5pW2ID8kfVbbr4wAHu9SsM221OAQUiQ21j6SW-rMFjUCgWyXtlxji-gowYWowFcbjFHF4XMCc3ieuGOozuW9PiuPtPvd~W7pK6tfWiTywFcNEbu3XfuC5fbYdb6A~zL5kIlS6yKX5E4Bldoe-V424Mbk6JehrCaJ7-HEL8kYH21aZt~DAI7RX4BEF~cRtjTVYf8I0PcJAZMIn~iCum0D0sI1MsMCYpnUHHe0J-WpGnDGo509mszZlIZYfAzoQfdVPpCRVhc6WUvkGnI5Eeyl6~NjJ4mEjvCAOXETEcNtl1ktGKRtMK~5pDe96SsPTTg3JQBg8YtgqvZlQJKlQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA}
    }
    
  133. [133]C. F. Dunkl, P. Gawron, Ł. Pawela, Z. Puchała, and K. Życzkowski, “Real numerical shadow and generalized B-splines,” Linear Algebra and its Applications, vol. 479, pp. 12–51, 2015, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S0024379515002050.
    @article{dunkl2014real,
      title = {Real numerical shadow and generalized B-splines},
      author = {Dunkl, Charles F and Gawron, Piotr and Pawela, Łukasz and Puchała, Zbigniew and Życzkowski, Karol},
      journal = {Linear Algebra and its Applications},
      volume = {479},
      pages = {12--51},
      year = {2015},
      publisher = {Elsevier},
      url = {https://www.sciencedirect.com/science/article/pii/S0024379515002050}
    }
    
  134. [134]D. C. Brody, D. W. Hook, and L. P. Hughston, “On quantum microcanonical equilibrium,” Journal of Physics: Conference Series, vol. 67, no. 1, p. 012025, 2007, [Online]. Available at: https://iopscience.iop.org/article/10.1088/1742-6596/67/1/012025/meta.
    @article{brody2007on,
      title = {On quantum microcanonical equilibrium},
      author = {Brody, Dorje C and Hook, Daniel W and Hughston, Lane P},
      journal = {Journal of Physics: Conference Series},
      volume = {67},
      number = {1},
      pages = {012025},
      year = {2007},
      organization = {IOP Publishing},
      url = {https://iopscience.iop.org/article/10.1088/1742-6596/67/1/012025/meta}
    }
    
  135. [135]D. C. Brody, D. W. Hook, and L. P. Hughston, “Quantum phase transitions without thermodynamic limits,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 463, no. 2084, pp. 2021–2030, 2007, [Online]. Available at: https://royalsocietypublishing.org/doi/full/10.1098/rspa.2007.1865.
    @article{brody2007quantum,
      title = {Quantum phase transitions without thermodynamic limits},
      author = {Brody, Dorje C and Hook, Daniel W and Hughston, Lane P},
      journal = {Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences},
      volume = {463},
      number = {2084},
      pages = {2021--2030},
      year = {2007},
      publisher = {The Royal Society London},
      url = {https://royalsocietypublishing.org/doi/full/10.1098/rspa.2007.1865}
    }
    
  136. [136]D. C. Brody, D. W. Hook, and L. P. Hughston, “Microcanonical distributions for quantum systems,” arxiv, vol. 1, pp. 1–8, 2005, [Online]. Available at: https://arxiv.org/abs/quant-ph/0506163.
    @article{brody2005microcanonical,
      title = {Microcanonical distributions for quantum systems},
      author = {Brody, D. C. and Hook, D. W. and Hughston, L. P.},
      journal = {arxiv},
      volume = {1},
      pages = {1-8},
      year = {2005},
      url = {https://arxiv.org/abs/quant-ph/0506163}
    }
    
  137. [137]D. C. Brody and L. P. Hughston, “The quantum canonical ensemble,” Journal of Mathematical Physics, vol. 39, no. 12, pp. 6502–6508, 1998, [Online]. Available at: https://aip.scitation.org/doi/abs/10.1063/1.532661.
    @article{brody1998the,
      title = {The quantum canonical ensemble},
      author = {Brody, Dorje C and Hughston, Lane P},
      journal = {Journal of Mathematical Physics},
      volume = {39},
      number = {12},
      pages = {6502--6508},
      year = {1998},
      publisher = {American Institute of Physics},
      url = {https://aip.scitation.org/doi/abs/10.1063/1.532661}
    }
    
  138. [138]L. C. Venuti and P. Zanardi, “Probability density of quantum expectation values,” Physics Letters A, vol. 377, no. 31-33, pp. 1854–1861, 2013, [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S037596011300529X.
    @article{zanardi2012probability,
      title = {Probability density of quantum expectation values},
      author = {Venuti, L Campos and Zanardi, Paolo},
      journal = {Physics Letters A},
      volume = {377},
      number = {31-33},
      pages = {1854--1861},
      year = {2013},
      publisher = {Elsevier},
      url = {https://www.sciencedirect.com/science/article/pii/S037596011300529X}
    }